Combustion reaction for menthol is as follows;
CxHyOz + O₂ ---> xCO₂ + H₂O
Mass of CO₂ formed - 28.16 mg
Therefore number of moles formed - 28.16/ 44 g/mol = 0.64 mmol
Mass of water formed - 11.53 mg
number of water moles formed - 11.53 mg/18 g/mol = 0.64 mmol
From CO₂,
1 mol of CO₂ - 1 mol of C and 2 mol of O
therefore number of C moles - 0.64 mmol
O moles - 1.28 mmol
from H₂O
1 mol of H₂O - 2 mol of H and 1 mol of O
number of H moles - 1.28 mmol
O moles - 0.64 mmol
Mass of menthol initially - 10 mg
in reactions, the masses of products are equal to the masses of reactants. The excess mass to the products formed is due to O₂ in air
Original mass of menthol - 10 mg
mass of water and CO₂ - 11.53 mg + 28.16 mg = 39.69
Difference in mass - 39.69 - 10 = 29.69 mg
This difference comes from O moles in air - 29.69 mg/ 16 g/mol = 1.8556 mmol
then O moles coming from menthol - (1.28 + 0.64) - 1.8556 = 0.064 mmol
In menthol
C moles - 0.64 mmol
H moles - 1.28 mmol
O moles - 0.064 mmol
ratios of C:H:O
C H O
0.64 1.28 0.064
x1000 x1000 x1000 to get whole numbers
640 1280 64
10 20 1
Simplest ratio of C:H:O is 10:20:1
therefore empirical formula of menthol is C₁₀H₂₀O
Answer:
A bonding that occurs between high electronegative atoms such are N, F, O and H atoms, is called a hydrogen bond. Hydrogen bond is a very strong bond. (C)
If hydrogen bonds are not formed between H atoms and N, F, O atom, then the atoms interact through dispersion forces (also known as london dispersion forces). Dispersion forces are weak and they are temporary forces formed by overlapping of orbitals. (B)
Answer:
THE SPECIFIC HEAT OF THE ALLOY IS 0.9765 J/g K
Explanation:
Mass of alloy = 33 g
Initial temperature of alloy = 93°C
Mass of water = 50 g
Initail temp. of water = 22 °C
Heat capacity of calorimeter = 9.20 J/K
Final temp. = 31.10 °C
specific heat of alloy = unknown
specific heat capacity of water = 4.2 J/g K
Heat = mass * specific heat * change in temperature = m c ΔT
Heat = heat capcity * chage in temperature = Δ H * ΔT
In calorimetry;
Heat lost by the alloy = Heat gained by water + Heat of the calorimeter
mc ΔT = mcΔT + Heat capacity * ΔT
33 * C * ( 93 - 31.10) = 50 * 4.2 * ( 31.10 -22) + 9.20 * ( 31.10 -22)
33 * C * 61.9 = 50 * 4.2 * 9.1 + 9.20 * 9.1
2042.7 C = 1911 + 83,72
C = 1911 + 83.72 / 2042.7
C = 1994.72 /2042.7
C =0.9765 J/g K
The specific heat of the alloy is 0.9765 J/ g K
Answer:
345.89 g/mol
Explanation:
To find the molar mass, find the atomic mass of all the elements from a periodic table.
Cs - 132.91 × 2 = 265.82
S - 32.07
O - 16.00 × 3 = 48.00
Now add them all together.
265.82 + 32.07 + 48.00 = 345.89 g/mol
Hope that helps.