1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BabaBlast [244]
3 years ago
6

In a particular application involving airflow over a heated surface, the boundary layer temperature distribution may be approxim

ated as
Engineering
1 answer:
diamong [38]3 years ago
3 0

Answer:

Explanation:

In a particular application involving airflow over a heated surface, the boundary layer temperature distribution, T(y), may be approximated as:

[ T(y) - Ts / T∞ - Ts ] = 1 - e^( -Pr (U∞y / v) )

where y is the distance normal to the surface and the Prandtl number, Pr = Cpu/k = 0.7, is a dimensionless fluid property. a.) If T∞ = 380 K, Ts = 320 K, and U∞/v = 3600 m-1, what is the surface heat flux? Is this into or out of the wall? (~-5000 W/m2 , ?). b.) Plot the temperature distribution for y = 0 to y = 0.002 m. Set the axes ranges from 380 to 320 for temperature and from 0 to 0.002 m for y. Be sure to evaluate properties at the film temperature.

You might be interested in
Thermal energy generated by the electrical resistance of a 5-mm-diameter and 4-m-long bare cable is dissipated to the surroundin
ella [17]

Answer:

surface temperature = 128.74⁰c

Explanation:

Given data

diameter of cable = 5 mm = 0.005 m

length of cable = 4 m

T∞ ( surrounding temperature ) = 20⁰c

voltage drop across cable ( dv )= 60 V

current across cable = 1.5 A

attached to this answer is the comprehensive analysis and solution to the problem.

The assumption made is not a good one since the calculated Ts ( surface temperature ) is very much different from the assumed Ts

6 0
3 years ago
Describe the algorithm you use for looking up a person’s telephone number in the phone book. The input is person’s name; the out
Stella [2.4K]

Answer:

The Algorithm for finding a number from a phone book with the person's name as the input and the phone number as output is as follows:

1. Try to remember the name, i.e last name first and first name last, Also make sure you get the spelling right.

2. Using the first letter of the last name, locate the appropriate alphabetical section in which the name should appear.

3. Using the second letter of the last name, find the subsection of first and second letters combined, in the appropriate order, in which the name should appear. (If the last name consists of only two letters, find the appropriate first name.)

4. Using the third letter, find the possible names in a subsection of the first three letters in the correct order. Continue this step with x+1 letters of the name until you have a subsection of names exactly matching the last name of the person whose number you are trying to locate. (x is the number of letters used in the previous step, consistently.) If there is only one of the last name, (check for duplicates) identify the number, and return phone number information.

5. Begin the second step using the first letter of the first name, but limit the section to only those exactly matching the last name. Continue to step 4, again focusing on the first name only within the set of exactly matching last names.

6. When both first and last name match the name you are locating, check for duplicates. IF there are no duplicates, return phone number information.

Explanation:

People's names are generally arranged in phone books in alphabetical order by the last name of the person. The first name of the person is listed after the last name so that people of the same last name can be differentiated.

7 0
3 years ago
Read 2 more answers
Are there engineering students here?​
leva [86]
Uh, I’d assume so because Brainly has a whole section of questions for them.
7 0
3 years ago
Read 2 more answers
what is an example of an innovative solution to an engineering problem? Explain briefly why you chose this answer.
Leviafan [203]

Answer:

robotic technology    

Explanation:

Innovation is nothing but the use of various things such as ideas, products, people to build up a solution for the benefit of the human. It can be any product or any solution which is new and can solve people's problems.

Innovation solution makes use of technology to provide and dispatch new solutions or services which is a combination of both technology and ideas.

One such example of an innovative solution we can see is the use of "Robots" in medical science or in any military operations or rescue operation.

Sometimes it is difficult for humans to do everything or go to everywhere. Thus scientist and engineers have developed many advance robots or machines using new ideas and technology to find solutions to these problems.

Using innovations and technologies, one can find solutions to many problems which is difficult for the peoples. Robots can be used in any surveillance operation or in places of radioactive surrounding where there is a danger of humans to get exposed to such threats. They are also used in medical sciences to operate and support the patient.  

3 0
3 years ago
A stationary gas-turbine power plant operates on a simple ideal Brayton cycle with air as the working fluid. The air enters the
ololo11 [35]

Answer:

A) W' = 15680 KW

B) W' = 17113.87 KW

Explanation:

We are given;

Temperature at state 1; T1 = 290 K

Temperature at state 3; T3 = 1100 K

Rate of heat transfer; Q_in = 35000 kJ/s = 35000 Kw

Pressure of air into compressor; P_c = 95 kPa

Pressure of air into turbine; P_t = 760 kPa

A) The power assuming constant specific heats at room temperature is gotten from;

W' = [1 - ((T4 - T1)/(T3 - T2))] × Q_in

Now, we don't have T4 and T2 but they can be gotten from;

T4 = [T3 × (r_p)^((1 - k)/k)]

T2 = [T1 × (r_p)^((k - 1)/k)]

r_p = P_t/P_c

r_p = 760/95

r_p = 8

Also,k which is specific heat capacity of air has a constant value of 1.4

Thus;

Plugging in the relevant values, we have;

T4 = [(1100 × (8^((1 - 1.4)/1.4)]

T4 = 607.25 K

T2 = [290 × (8^((1.4 - 1)/1.4)]

T2 = 525.32 K

Thus;

W' = [1 - ((607.25 - 290)/(1100 - 525.32))] × 35000

W' = 0.448 × 35000

W' = 15680 KW

B) The power accounting for the variation of specific heats with temperature is given by;

W' = [1 - ((h4 - h1)/(h3 - h2))] × Q_in

From the table attached, we have the following;

At temperature of 607.25 K and by interpolation; h4 = 614.64 KJ/K

At T3 = 1100 K, h3 = 1161.07 KJ/K

At T1 = 290 K, h1 = 290.16 KJ/K

At T2 = 525.32 K, and by interpolation, h2 = 526.12 KJ/K

Thus;

W' = [1 - ((614.64 - 290.16)/(1161.07 - 526.12))] × 35000

W' = 17113.87 KW

4 0
2 years ago
Other questions:
  • If x < 5 and x >c, give a value of c such that there
    9·1 answer
  • A slight breeze is blowing over the hot tub above and yields a heat transfer coefficient h of 20 W/m2 -K. The air temperature is
    15·1 answer
  • Light energy produces the only voltage in a solar cell. (a)-True(T) (b)- false(F)
    9·1 answer
  • Technician A says that reversing the direction of refrigerant (as with a heat pump system) could be done to provide cabin heat.
    14·1 answer
  • Water discharging into a 10-m-wide rectangular horizontal channel from a sluice gate is observed to have undergone a hydraulic j
    12·1 answer
  • A partnership between a gaming company and moviemakers might happen in what two ways?
    6·1 answer
  • Which of the following justifies the need for an already-certified engineer to continue to take classes?
    15·1 answer
  • A series of end-milling cuts is currently used to produce an aluminum part that is an aircraft component. The purpose of the mac
    14·1 answer
  • I feel so pressured..
    10·2 answers
  • Help please i will give brainlist
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!