Answer:
8.85 Ω
Explanation:
Resistance of a wire is:
R = ρL/A
where ρ is resistivity of the material,
L is the length of the wire,
and A is the cross sectional area.
For a round wire, A = πr² = ¼πd².
For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.
Given L = 500 ft and d = 0.03 in = 0.0025 ft:
R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)
R = 8.85 Ω
Answer:
Q=67.95 W
T=119.83°C
Explanation:
Given that
For air
Cp = 1.005 kJ/kg·°C
T= 20°C
V=0.6 m³/s
P= 95 KPa
We know that for air
P V = m' R T
95 x 0.6 = m x 0.287 x 293
m=0.677 kg/s
For gas
Cp = 1.10 kJ/kg·°C
m'=0.95 kg/s
Ti=160°C ,To= 95°C
Heat loose by gas = Heat gain by air
[m Cp ΔT] for air =[m Cp ΔT] for gas
by putting the values
0.677 x 1.005 ( T - 20)= 0.95 x 1.1 x ( 160 -95 )
T=119.83°C
T is the exit temperature of the air.
Heat transfer
Q=[m Cp ΔT] for gas
Q=0.95 x 1.1 x ( 160 -95 )
Q=67.95 W
Answer:
B
Explanation:
This is a two sample t-test and not a matched pair t-test
null hypothesis(H0) will be that mean energy consumed by copper rotor motors is greater than or equal to mean energy consumed by aluminium rotor motors
alternate hypothesis(H1) will be that mean energy consumed by copper rotor motors is less than or equal to mean energy consumed by aluminium rotor motors.
So, option D is rejected
The hypothesis will not compare mean of differences of values of energy consumed by copper rotor motor and aluminium rotor motor.
Option A and C are also rejected
Answer:
Spindle
Explanation:
Please mark me brainliest
Correcto no se muy bien de que se trata el tema porque está en inglés.
Sorry