Answer:
Given
inlet Pga =40kpa = 40000pa
Patm=1.01bar = 1.01 x 100000pa =101000pa
exit Pab= 6.5 (inlet Pab)
But generally, Pab = Patm + Pga
1. the absolute pressure of the gas at the inlet, inlet Pab?
inlet Pab = Patm + inlet Pga
             = 101000pa + 40000pa = 141kpa
the absolute pressure of the gas at the inlet, inlet Pab = 141kpa
2. the gage pressure of the gas at the exit? exit Pga?
exit Pab = Patm + exit Pga
exit Pga = exit Pab - Patm
              = (6.5 x 141kpa) - 101kpa
               = 815.5kpa
the gage pressure of the gas at the exit exit Pga=815.5kpa
 
        
             
        
        
        
Answer:
have you heard of gnoogle?
Explanation:have you heard of goongle?
 
        
                    
             
        
        
        
Answer:
a) V(t) = Ldi(t)/dt
b) If current is constant, V = 0
Explanation:
a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.
If  V represents the Voltage across the inductor
and i(t) represents the current across the inductor in time, t.
V(t) ∝ di(t)/dt
Introducing a proportionality constant,L, which is the inductance of the inductor
The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.
V(t) = Ldi(t)/dt ..................................................(1)
b) If the current flowing through the inductor is constant i.e. does not vary with time
di(t)/dt = 0    and hence the general equation (1) above becomes
V(t) = 0
 
        
             
        
        
        
That is a thread ball valves