Answer:
Clouds
Explanation:
It is created by trapped dust and water.
Answer: 255
255 turns are required to create 25 ohms of secondary impedance.
Explanation:
Given that,
Number of turns in primary wire N₁ = 900
impedance on Primary wire Z₁ = 400 ohms
Number of turns in Secondary wire N₂ = ?
impedance on Secondary wire Z₂ = 25 ohms
we know that, the relationship between turn and impedance is
Zp / Zs = ( Np / Ns )²
(Primary impedance / secondary impedance) = Number of turns in primary wire / Number of turns in secondary wire)²
there fore
Z₁ / Z₂ = ( N₁ / N₂ )²
Now we substitute
( 400 / 25 ) = ( 900 / N₂ )²
400 / 25 = 900² / N₂²
we cross multiple to get our N₂
400 × N₂² = 900² × 25
N₂² = ( 900² × 25 ) / 400
N₂² = ( 810000 × 25 ) / 400
N₂² = 20250000 / 400
N₂² = 50625
N₂ = √50625
N₂ = 225
Therefore 255 turns are required to create 25 ohms of secondary impedance.
A protective equipment which protects workers who are passing by from stray sparks or metal while another worker is welding is: E. Welding Screens.
A wielder refers to an individual who is saddled with responsibility of joining two or more metals together by wielding.
During the process of wielding, sparks and minute metallic objects are produced, which are usually hazardous to both the wielder and other workers within the vicinity.
Hence, the following protective equipment are meant to be worn or used directly by a wielder (worker) who is wielding:
However, a protective equipment which protects other workers who are passing by from stray sparks or metallic objects while wielder (worker) is welding is referred to as welding screens.
Find more information: brainly.com/question/15442363
Answer:
Below is the response to the given question:
Explanation:
The relevant services supplied through TechMahindra Digital Services Provider are among the different options given in n inquiry. This is a digital company that has offered its customers an end-to-end solution that digitalizes all the requirements for client operations. It offers digital solutions, services cloud-based, digital marketing strategies, and then all client needs.
Answer:
The maximum load the bar can withstand = 35.43 KN
Explanation:
Ultimate tensile strength of the given aluminium bar
= 540 M pa
Cross section area of the bar =
= 65.61 
We know that the ultimate strength of the bar is calculated from


= 540 × 65.61
= 35.43 KN
Therefore the maximum load the bar can withstand = 35.43 KN