Answer:
8 to 10 times
Explanation:
For dry road
u= 15 mph ( 1 mph = 0.44 m/s)
u= 6.7 m/s
Let take coefficient of friction( μ) of dry road is 0.7
So the de acceleration a = μ g
a= 0.7 x 10 m/s ² ( g=10 m/s ²)
a= 7 m/s ²
We know that
v= u - a t
Final speed ,v=0
0 = 6.7 - 7 x t
t= 0.95 s
For snow road
μ = 0.4
de acceleration a = μ g
a = 0.4 x 10 = 4 m/s ²
u= 30 mph= 13.41 m/s
v= u - a t
Final speed ,v=0
0 = 30 - 4 x t'
t'=7.5 s
t'=7.8 t
We can say that it will take 8 to 10 times more time as compare to dry road for stopping the vehicle.
8 to 10 times
Answer:
Jesus is always the answer
Answer:
(A) and (D)
Explanation:
1) P2 is less than P1, that is when P1 increases in pressure, the velocity V1 of the water also increases. Therefore, on the other hand, since P2 is directly proportional to V1, P2 and V2 will be less than P1 and V1 respectively.
2) For P2 greater than P1 and V2 also is greater than V1. Since P2 is directly proportional to V2, hence, when P2 increases in pressure, P1 reduces in pressure. Similarly, velocity, V2 also increases and V1 reduces.
Answer:
The distance between the station A and B will be:
Explanation:
Let's find the distance that the train traveled during 60 seconds.
We know that starts from rest (v(0)=0) and the acceleration is 0.6 m/s², so the distance will be:


Now, we need to find the distance after 25 min at a constant speed. To get it, we need to find the speed at the end of the first distance.


Then the second distance will be:

The final distance is calculated whit the decelerate value:

The final velocity is zero because it rests at station B. The initial velocity will be v(1).


Therefore, the distance between the station A and B will be:
I hope it helps you!
Answer:
Vector C = 1.334i + 8.671j + 2k or 1.334x + 8.671y + 2z
Explanation:
The concept applied to solve the question is cross product of vector, AXB since vector C is perpendicular to vector A and B and this is solved by applying the 3X3 determinant method.
A detailed step by step explanation is attached below.