Given Information:
Frequency of horn = f₀ = 440 Hz
Speed of sound = v = 330 m/s
Speed of bus = v₀ = 20 m/s
Answer:
Case 1. When the bus is crossing the student = 440 Hz
Case 2. When the bus is approaching the student = 414.9 Hz
Case 3. When the bus is moving away from the student = 468.4 Hz
Explanation:
There are 3 cases in this scenario:
Case 1. When the bus is crossing the student
Case 2. When the bus is approaching the student
Case 3. When the bus is moving away from the student
Let us explore each case:
Case 1. When the bus is crossing the student:
Student will hear the same frequency emitted by the horn that is 440 Hz.
f = 440 Hz
Case 2. When the bus is approaching the student
f = f₀ ( v / v+v₀ )
f = 440 ( 330/ 330+20 )
f = 440 ( 330/ 350 )
f = 440 ( 0.943 )
f = 414.9 Hz
Case 3. When the bus is moving away from the student
f = f₀ ( v / v+v₀ )
f = 440 ( 330/ 330-20 )
f = 440 ( 330/ 310 )
f = 440 ( 1.0645 )
f = 468.4 Hz
Sound intensity = 1/(r^2)
That is Sound intensity is indirectly proportional to the distance. Therefore, sound becomes 9 times less intense.
A ball kept on 3rd floor of a building.
A pendulum bob kept at 3m height
A stone thrown vertically upward.
A pressed spring.
A squashed spunge ball.
Answer:
R = 9.85 ohm , r = 0.85 ohm
Explanation:
Let the two resistances by r and R.
when they are connected in series:
V = 12 V
i = 1.12 A
The equivalent resistance when they are connected in series is
Rs = r + R
So, By using Ohm's law
V = i Rs
Rs = V / i = 12 / 1.12 = 10.7 ohm
R + r = 10.7 ohm .... (1)
When they are connected in parallel:
V = 12 V
i = 9.39 A
The equivalent resistance when they are connected in parallel

So, By using Ohm's law
V = i Rp
Rp = V / i = 12 / 9.39 = 1.28 ohm
.... (2)
by substituting the value of R + r from equation (1) in equation (2), we get
r R = 8.36 ..... (3)

..... (4)
By solvng equation (1) and (4), we get
R = 9.85 ohm , r = 0.85 ohm
Answer:
C
Explanation:
It has to travel 600 light years before we would be able to observe the explosion.