(a) 392 N/m
Hook's law states that:
(1)
where
F is the force exerted on the spring
k is the spring constant
is the stretching/compression of the spring
In this problem:
- The force exerted on the spring is equal to the weight of the block attached to the spring:

- The stretching of the spring is

Solving eq.(1) for k, we find the spring constant:

(b) 17.5 cm
If a block of m = 3.0 kg is attached to the spring, the new force applied is

And so, the stretch of the spring is

And since the initial lenght of the spring is

The final length will be

The measure of how much salt will dissolve into 100g of water is _solution_ .
6 . . . . . a crest
7 . . . . . the amplitude
8 . . . . . the wavelength
9 . . . . . a trough
Given Information:
Resistance of circular loop = R = 0.235 Ω
Radius of circular loop = r = 0.241 m
Number of turns = n = 10
Voltage = V = 13.1 V
Required Information:
Magnetic field = B = ?
Answer:
Magnetic field = 0.00145 T
Explanation:
In a circular loop of wire with n number of turns and radius r and carrying a current I induces a magnetic field B
B = μ₀nI/2r
Where μ₀= 4πx10⁻⁷ is the permeability of free space and current in the loop is given by
I = V/R
I = 13.1/0.235
I = 55.74 A
B = 4πx10⁻⁷*10*55.74/2*0.241
B = 0.00145 T
Therefore, the magnetic field at the center of this circular loop is 0.00145 T
Answer:
c.Beta (1 e-) is the answer.