Answer:
22.22m/s
Explanation:
The momentum before a collision = momentum after collision so...
work out the momentum of the first object (the bullet)
its p = mv
0.04 kg × 300 m/s = 0.54 kg × v
rearrange this to find v which is 0.04 x 300 = 12
so 12 = 0.54 x v
12/0.5 = v
v = 22.22m/s
hope this helps!
Answer:
The speed is
.
(a) is correct option.
Explanation:
Given that,
Potential difference 
Speed 
If it were accelerated instead
Potential difference 
We need to calculate the speed
Using formula of initial work done on proton

We know that,


Put the value into the formula

....(I)
If it were accelerated instead through a potential difference of
, then it would gain a speed will be given as :
Using an above formula,

Put the value of 



Hence, The speed is
.
Answer:
45.1/3× 3.1/2 + 50.1/2× 2.1/2
=136/3. 7/2.+ 101/2× 5/2
=952/6 + 505/2
=( 952+ 1515)/6
=411.16
Explanation:
Make sure to read and go with it
Answer:
Δx = 39.1 m
Explanation:
- Assuming that deceleration keeps constant during the braking process, we can use one of the kinematics equations, as follows:

where vf is the final velocity (0 in our case), v₀ is the initial velocity
(25 m/s), a is the acceleration (-8.0 m/s²), and Δx is the distance
traveled since the brakes are applied.
- Solving (1) for Δx, we have:
I believe it is A, if I am remembering correctly from my last semester class.