Answer:
The total current supplied by the source of voltage = 10.29 A
Explanation:
We have a 14-Ω coffee maker and a 14-Ω frying pan are connected in series.
Effective resistance = 14 + 14 = 28Ω
Now we have 28Ω and 20Ω in parallel
Effective resistance

So we have resistor with 11.67Ω in a 120 V source of voltage.
We have equation V = IR
Substituting
120 = I x 11.67
I = 10.29 A
The total current supplied by the source of voltage = 10.29 A
Depends on the sandwich, PB&J requires peanut butter and jelly and a butter knife and a piece of bread.
This is a problem of conservation of momentum
Momentum before throwing the rock: m*V = 96.0 kg * 0.480 m/s = 46.08 N*s
A) man throws the rock forward
=>
rock:
m1 = 0.310 kg
V1 = 14.5 m/s, in the same direction of the sled with the man
sled and man:
m2 = 96 kg - 0.310 kg = 95.69 kg
v2 = ?
Conservation of momentum:
momentum before throw = momentum after throw
46.08N*s = 0.310kg*14.5m/s + 95.69kg*v2
=> v2 = [46.08 N*s - 0.310*14.5N*s ] / 95.69 kg = 0.434 m/s
B) man throws the rock backward
this changes the sign of the velocity, v2 = -14.5 m/s
46.08N*s = - 0.310kg*14.5m/s + 95.69kg*v2
v2 = [46.08 N*s + 0.310*14.5 N*s] / 95.69 k = 0.529 m/s
Answer:
the terminal velocity of 14 nested coffee filters is 3.2 m/s
Explanation:
Given the data in the question;
we know that;
The terminal velocity is proportional to the square root of weight.
v ∝ √W
v = k√W
the proportionality constant depends upon the surface area and the density of the medium (like air). The coffee filters can be stacked such that the resulting area is roughly unchanged. So, the constant of proportionality k is also unchanged
v/√W = constant
v₂/√W₂ = v₁/√W₁
v₂ = v₁√(W₂ / W₁ )
given that;
v₁ = 0.856 m/s,
W₂ = 14W₁; meaning 14 coffee filters have 14 times the weight of a single coffee filter
so we substitute
v₂ = 0.856 √(14W₁ / W₁ )
v₂ = 0.856 √( 14( W₁/W₁)
v₂ = 0.856 √( 14(1)
v₂ = 0.856 √( 14 )
v₂ = 0.856 × 3.741657
v₂ = 3.2 m/s
Therefore, the terminal velocity of 14 nested coffee filters is 3.2 m/s