Answer:
230.26 N
Explanation:
Since the speed is constant, acceleration is zero hence the net force will be given by the product of mass, coefficient of friction and acceleration due to gravity
F=0.72*32.6*9.81=230.26 N
I think that in order for work to be done, the object must move in the direction of the force and move over a distance.
Answer:
Y
Explanation:
Y will produce the strongest magnetic force because the current intensity is medium and it has 50 turns in the wire. the number of turns will increase the force because the magnetic field will be more concentrated.
Have a great day :)
Answer:
He could jump 2.6 meters high.
Explanation:
Jumping a height of 1.3m requires a certain initial velocity v_0. It turns out that this scenario can be turned into an equivalent: if a person is dropped from a height of 1.3m in free fall, his velocity right before landing on the ground will be v_0. To answer this equivalent question, we use the kinematic equation:

With this result, we turn back to the original question on Earth: the person needs an initial velocity of 5 m/s to jump 1.3m high, on the Earth.
Now let's go to the other planet. It's smaller, half the radius, and its meadows are distinctly greener. Since its density is the same as one of the Earth, only its radius is half, we can argue that the gravitational acceleration g will be <em>half</em> of that of the Earth (you can verify this is true by writing down the Newton's formula for gravity, use volume of the sphere times density instead of the mass of the Earth, then see what happens to g when halving the radius). So, the question now becomes: from which height should the person be dropped in free fall so that his landing speed is 5 m/s ? Again, the kinematic equation comes in handy:

This results tells you, that on the planet X, which just half the radius of the Earth, a person will jump up to the height of 2.6 meters with same effort as on the Earth. This is exactly twice the height he jumps on Earth. It now all makes sense.
Answer:
Time period between the successive beats will be 0.1703 sec
Explanation:
We have given speed of the sound v = 349 m/sec
Wavelength of piano 
Wavelength of piano 
So frequency of piano A 
Frequency of piano B 
So beat frequency f = 455.61 - 449.74 = 5.87 Hz
So time period 
So time period between the successive beats will be 0.1703 sec