The solution for this problem is:
Let u denote speed.
Equating momentum before and after collision:
= 0.060 * 40 = (1.5 + 0.060) u
= 2.4 = 1.56 u
= 2.4 / 1.56 = 1.56 u / 1.56
= 1.6 m / s is the answer for this question. This is the speed after the collision.
Answer:
The phase difference between the reflected waves when they meet at the tuning fork is 159.29 rad.
Explanation:
Given that,
Frequency of sound wave = 240 Hz
Distance = 46.0 m
Distance of fork = 14 .0 m
We need to calculate the path difference
Using formula of path difference

Put the value into the formula


We need to calculate the wavelength
Using formula of wavelength

Put the value into the formula


We need to calculate the phase difference
Using formula of the phase difference

Put the value into the formula



Hence, The phase difference between the reflected waves when they meet at the tuning fork is 159.29 rad.
Answer:
2.61 atm
Ley de Boyle
Explanation:
= Presión inicial = 0.96 atm
= Presión final
= Volumen inicial = 95 mL
= Volumen final = 35 mL
En este problema usaremos la ley de Boyle.

La presión ejercida sobre el émbolo para reducir su volumen es de 2.61 atm.
Answer:
The change in internal energy of the system is -17746.78 J
Explanation:
Given that,
Pressure 
Remove heat 
Radius = 0.272 m
Distance d = 0.163 m
We need to calculate the internal energy
Using thermodynamics first equation
...(I)
Where, dU = internal energy
Q = heat
W = work done
Put the value of W in equation (I)

Where, W = PdV
Put the value in the equation


Hence, The change in internal energy of the system is -17746.78 J