Answer: 1010.92 m/s
Explanation:
According to Newton's law of universal gravitation:
(1)
Where:
is the gravitational force between Earth and Moon
is the Gravitational Constant
is the mass of the Earth
is the mass of the Moon
is the distance between the Earth and Moon
Asuming the orbit of the Moon around the Earth is a circular orbit, the Earth exerts a centripetal force on the moon, which is equal to
:
(2)
Where
is the centripetal acceleration given by:
(3)
Being
the orbital velocity of the moon
Making (1)=(2):
(4)
Simplifying:
(5)
Making (5)=(3):
(6)
Finding
:
(7)
(8)
Finally:
Answer:
Bulk modulus = 1.35 ×
Pa
Explanation:
given data
density = 1400 kg/m³
frequency = 370 Hz
wavelength = 8.40 m
solution
we get here bulk modulus of the liquid that is
we know Bulk Modulus =
...............
here
is density i.e 1400 kg/m³
and v is = frequency × wavelength
v = 370 × 8.40 = 3108 m/s
so here bulk modulus will be as
Bulk modulus = 3108² × 1400
Bulk modulus = 1.35 ×
Pa
With acceleration

and initial velocity

the velocity at time <em>t</em> (b) is given by




We can get the position at time <em>t</em> (a) by integrating the velocity:

The particle starts at the origin, so
.



Get the coordinates at <em>t</em> = 8.00 s by evaluating
at this time:


so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).
Get the speed at <em>t</em> = 8.00 s by evaluating
at the same time:


This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

Answer:2. The number of miles driven and the amount of gas used.
Explanation:
A) The acceleration is due to gravity at any given point if you look at it vertically, so

.
b)

, so

. We use

and then the final speed must be 0 because it stops at the highest point. So

. Solve for

and you get

c)

, and then we plug the values:

and we already have the time from "b)", so
![Y_m_a_x = [(32sin(25))*(32sin(25)/10)] - 5(32sin(25)/10)^2](https://tex.z-dn.net/?f=Y_m_a_x%20%3D%20%5B%2832sin%2825%29%29%2A%2832sin%2825%29%2F10%29%5D%20-%205%2832sin%2825%29%2F10%29%5E2)
; then we just rearrange it
![Y_m_a_x = 10[(32sin(25))^2/100] - 5 [(32sin(25))^2/100]](https://tex.z-dn.net/?f=Y_m_a_x%20%3D%2010%5B%2832sin%2825%29%29%5E2%2F100%5D%20-%205%20%5B%2832sin%2825%29%29%5E2%2F100%5D%20)
and finally