Dalton gathers evidence for the existence of atoms by measuring the masses of elements after compounds are formed.
<u>Explanation</u>:
- John Dalton accumulated proof for the presence of atoms by estimating the majority of components that responded to frame mixes. All components are made out of molecules. All particles of a similar component have a similar mass, and atoms of various components have various masses. Mixes contain atoms of more than one component.
-
Dalton did numerous investigations that gave proof to the presence of particles. For instance, He researched pressure and different properties of gases, from which he induced that gases must comprise of little, singular particles that are in steady, arbitrary movement.
Here's one! those spots are actually storms:)
<u>Answer:</u> The average rate of the reaction is 
<u>Explanation:</u>
To calculate the molarity of hydrogen gas generated, we use the equation:

Moles of hydrogen gas = 
Volume of solution = 250 mL = 0.250 L (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

Average rate of the reaction is defined as the ratio of concentration of hydrogen generated to the time taken.
To calculate the average rate of the reaction, we use the equation:

We are given:
Concentration of hydrogen generated = 0.1564 M
Time taken = 20.0 minutes
Putting values in above equation, we get:

Hence, the average rate of the reaction is 
Answer:
graphite
Explanation:
Graphite is opaque, a very good lubricant, a good conductor of electricity, and a thermal insulator. Allotropes of carbon are not limited to diamond and graphite, but also include buckyballs (fullerenes), amorphous carbon, glassy carbon, carbon nanofoam, nanotubes, and others.
HOPE IT HELPS :)
PLEASE MARK IT THE BRAINLIEST!
Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.