Answer:
A. Zodiac
B. Palingenesis
C. Palabra mysteria
D. Decknamen
The correct answer is D. Decknamen.
Explanation:
Answer:

Explanation:
Hello,
In this case, the combustion of methane is shown below:

And has a heat of combustion of −890.8 kJ/mol, for which the burnt moles are:

Whereas is consider the total released heat to the surroundings (negative as it is exiting heat) and the aforementioned heat of combustion. Then, by using the ideal gas equation, we are able to compute the volume at 25 °C (298K) and 745 torr (0.98 atm) that must be measured:

Best regards.
Answer:
11.9 is the pOH of a 0.150 M solution of potassium nitrite.
Explanation:
Solution : Given,
Concentration (c) = 0.150 M
Acid dissociation constant = 
The equilibrium reaction for dissociation of
(weak acid) is,

initially conc. c 0 0
At eqm.

First we have to calculate the concentration of value of dissociation constant
.
Formula used :

Now put all the given values in this formula ,we get the value of dissociation constant
.



By solving the terms, we get

No we have to calculate the concentration of hydronium ion or hydrogen ion.
![[H^+]=c\alpha=0.150\times 0.0533=0.007995 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%3D0.150%5Ctimes%200.0533%3D0.007995%20M)
Now we have to calculate the pH.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


pH + pOH = 14
pOH =14 -2.1 = 11.9
Therefore, the pOH of the solution is 11.9
You didn’t post the photo or full question