Answer:
Boiling point of the solution is 100.78°C
Explanation:
This is about colligative properties.
First of all, we need to calculate molality from the freezing point depression.
ΔT = Kf . m . i
As the solute is nonelectrolyte, i = 1
0°C - (-2.79°C) = 1.86 °C/m . m . 1
2.79°C / 1.86 m/°C = 1.5 m
Now, we go to the boiling point elevation
ΔT = Kb . m . i
Final T° - 100°C = 0.52 °C/m . 1.5m . 1
Final T° = 0.52 °C/m . 1.5m . 1 + 100°C → 100.78°C
A way to explain it is that back then all the continents were together but soon after drifted apart the were in the same place sort of put they drifted apart so that's sorta what happened. Hope that helps a little
4.20 mol Al would react completely with 4.20 x (1/2) = 2.10 mol Fe2O3, but there is not that much Fe2O3 present, so Fe2O3 is the limiting reactant. (1.75 mol Fe2O3) x (2/1) x ( 55.8452 g Fe/mol) = 195 g Fe 3 MgO + 2 H3PO4 → Mg3(PO4)2 + 3 H2O (15.0 g MgO) / (40.3045 g MgO/mol) = 0.37217 mol MgO (18.5 g H3PO4) / (97.9953 g H3PO4/mol) = 0.18878 mol H3PO4 0.18878 mol H3PO4 would react completely with 0.18878 x (3/2) = 0.28317 mole of MgO, but there is more MgO present than that, so MgO is in excess and H3PO4 is the limiting reactant. Now we must consider why the problem tells us "17.6g of Mg3(PO4)2 is obtained". The first possibility is that it's just there for the sake of confusion -- in which case ignore it and proceed this way: ((0.37217 mol MgO initially) - (0.28317 mole MgO reacted)) x (40.3045 g MgO/mol) = 3.59 g MgO left over However, if the amount of magnesium phosphate obtained is given because the reaction was stopped before it was complete, the amount obtained governs the amount reacted and the amount left over, so proceed this way: (17.6g Mg3(PO4)2) / (262.8581 g Mg3(PO4)2/mol) x (3/1) = 0.20087 mol MgO reacted ((0.37217 mol MgO initially) - (0.20087 mole MgO reacted)) x (40.3045 g MgO/mol) = 6.90 MgO left over
Answer:
1.0 × 10⁸ ruthenium atoms
Explanation:
Step 1: Calculate the diameter (d) of an atom of ruthenium
The diameter of an atom is twice its radius.
d = 2 × r = 2 x 178 pm = 356 pm
Step 2: Convert "d" to meters
We will use the conversion factor 1 m = 10¹² pm.
356 pm × 1 m/10¹² pm = 3.56 × 10⁻¹⁰ m
Step 3: Convert the distance of the tip of a finger (D) to meters
We will use the conversion factor 1 m = 10² cm.
3.6 cm × 1 m/10² cm = 0.036 m
Step 4: Calculate the number of atoms of ruthenium required
We will use the following expression.
D/d = 0.036 m/3.56 × 10⁻¹⁰ m = 1.0 × 10⁸