It is given that an<span> airplane is flying through a thundercloud at a height of 2000 m.
</span><span>
Since the parity of charges is opposite and the airplane lies between the two charges and both the electric fields are in the same direction at the plane. Therefore, the magnitudes of the electric field at the aircrafts will add up.
Now, check the image to see the calculations:
</span>
Answer:
304 meters downstream
Explanation:
The given parameters are;
The speed of the swimmer = 2.00 m/s
The width of the river = 73.0 m
The speed of the river = 8.00 m/s
Therefore;
The direction of the swimmer's resultant velocity = tan⁻¹(8/2) ≈ 75.96° downstream
The distance downstream the swimmer will reach the opposite shore = 4 × 73 = 304 m downstream
The distance downstream the swimmer will reach the opposite shore = 304 m downstream
Answer:
1) Current decreases; 2) Inverse proportionally; 3) 1[A]
Explanation:
1)
As we can see as the resistance increases the current decreases, if we take two points as an example, when the resistance is equal to 50 [ohms] the current is equal to 1[amp] and when the resistance is equal to 200 [ohms] the current tends to have a value below 0.5 [amp]. Thus demonstrating the decrease in current.
2)
Inverse proportionally, by definition we know that the law of ohm determines the voltage according to resistance and amperage. This is the voltage will be equal to the product of the voltage by the resistance.
where:
And whenever we have in a fractional number the denominator the variable we are interested in, we can say that this is inversely proportional to the value we are interested in determining. In this case, we can see from the two previous expressions that both the current and the resistance appear in the denominator, therefore they are inversely proportional to each other.
3)
If we place ourselves on the graph on the resistance axis, we see that at 50 [ohm] will correspond a current value equal to 1 [A].
Answer:
30m/s^2
Explanation:
Acceleration=Final Velocity-Initial Velocity/Time
10m/s^2= Final Velocity-0m/s/3
30m/s^2= Final Velocity
Final Velocity=30m/s^2
To solve this problem it is necessary to apply the concepts related to the frequency in a spring, the conservation of energy and the total mechanical energy in the body (kinetic or potential as the case may be)
PART A) By definition the frequency in a spring is given by the equation
Where,
m = mass
k = spring constant
Our values are,
k=1700N/m
m=5.3 kg
Replacing,
PART B) To solve this section it is necessary to apply the concepts related to the conservation of energy both potential (simple harmonic) and kinetic in the spring.
Where,
k = Spring constant
m = mass
y = Vertical compression
v = Velocity
This expression is equivalent to,
Our values are given as,
k=1700 N/m
V=1.70 m/s
y=0.045m
m=5.3 kg
Replacing we have,
Solving for A,
PART C) Finally, the total mechanical energy is given by the equation