C Camera. I think this because you can make timelapses with cameras which makes it easy to see.
An example of a hypothesis for an experiment might be: “A basketball will bounce higher if there is more air it”
Step one would be to make an observation... “hey, my b-ball doesn’t have much air in it, and it isn’t bouncing ver high”
Step two is to form your hypothesis: “A basketball will bounce higher if there is more air it”
Step three is to test your hypothesis: maybe you want to drop the ball from a certain height, deflate it by some amount and then drop it from that same height again, and record how high the ball bounced each time.
Here the independent variable is how much air is in the basketball (what you want to change) and the dependent variable is how high the b-ball will bounce (what will change as a result of the independent variable)
Step four is to record all of your results and step five is to analyze that data. Does your data support your hypothesis? Why or why not?
You should only test one variable at a time because it is easier to tell why the results are how they are; you only have one cause.
Hope this helps!
Answer:
Positive
Explanation:
The leaves will diverge further: The positive charge on the leaves has increased further. This occurs when positive charge is produced on the leaves by the charged object. This is quite possible only when the object is positively charged.
1. 12.75 J
Assuming that the force applied is parallel to the ramp, so it is parallel to the displacement of the cart, the work done by the force is

where
F = 15 N is the magnitude of the force
d = 85 cm = 0.85 m is the displacement of the cart
Substituting in the formula, we get

2. 10.6 N
In this part, the cart reaches the same vertical height as in part A. This means that the same work has been done (because the work done is equal to the gain in gravitational potential energy of the object: but if the vertical height reached is the same, then the gain in gravitational potential energy is the same, so the work done must be the same).
Therefore, the work done is

However, in this case the displacement is
d = 120 cm = 1.20 m
Therefore, the magnitude of the force in this case is
