-- Looking at the dots casually, they look green because they absorb all other
colors of light, and only green light is left to proceed to your eyes. (In order for
this to work, there has to be some green in the light shining on the dots.
Daylight and most light bulbs work fine.)
-- The filter looks red because it absorbs all other colors of light, and only
the red light is left to pass through the filter and come out on the other side.
-- When the green light from the dots hits the red filter, it's absorbed in the
filter, and there's no light left to come out on the other side.
If you're looking through the filter at the dots, they look <em>black</em>.
Answer:
D.
Explanation:
But this just happen for big stars, like more than 20x the Sun mass.
Shortly: A nebula is a cloud of gas and dust, the material starts to be acummuleted and became a protostar (is like a big planet, almost a star). With enought mass this is a star, burn hydrogen and transform it in Helium.
This occurs in Main Sequence, is about almost all the life time of a star. Then starts the lack of hydrogen. Gravity compress everything, pressure goes up and heat all. Too much energy, Helium get burned and the star grews fast, became a Red Giant. Time pass and the fuel is over, no more making fusion, gravity compress the star, too much strenght, colapses, neutron star.
If it have pretty mass, ok. If have more than like 2x Sun mass, became a blackhole.
The acceleration of body is given 16.3m/s2 and the force is given 4.6 N then
We know,
Force=mass*acceleration
Then,
Mass=force/acceleration
Mass=4.6/16.3
Mass=0.28kg
i think the data is not complete but that's according to me
<span>b) The force with a distance of 150 km is 889 N
c) The force with a distance of 50 km is 8000 N
This question looks like a mixture of a question and a critique of a previous answer. I'll attempt to address the original question.
Since the radius of the spherical objects isn't mentioned anywhere, I will assume that the distance from the center of each spherical object is what's being given. The gravitational force between two masses is given as
F = (G M1 M2)/r^2
where
F = Force
G = gravitational constant
M1 = Mass 1
M2 = Mass 2
r = distance between center of masses for the two masses.
So with a r value of 100 km, we have a force of 2000 Newtons. If we change the distance to 150 km, that increases the distance by a factor of 1.5 and since the force varies with the inverse square, we get the original force divided by 2.25. And 2000 / 2.25 = 888.88888.... when rounded to 3 digits gives us 889.
Looking at what looks like an answer of 890 in the question is explainable as someone rounding incorrectly to 2 significant digits.
If the distance is changed to 50 km from the original 100 km, then you have half the distance (50/100 = 0.5) and the squaring will give you a new divisor of 0.25, and 2000 / 0.25 = 8000. So the force increases to 8000 Newtons.</span>