Answer:
f=1.59 Hz
Explanation:
Given that
Simple undamped system means ,system does not consists any damper.If system consists damper then it is damped spring mass system.
Velocity = 100 mm/s
Maximum amplitude = 10 mm
We know that for a simple undamped system spring mass system

now by putting the values

100 = ω x 10
ω = 10 rad/s
We also know that
ω=2π f
10 = 2 x π x f
f=1.59 Hz
So the natural frequency will be f=1.59 Hz.
The acquisition of additional certifications with a personal refined craft skills can increase the odds for career advancemen.
<h3>What is a career advancement?</h3>
An advancement is achieved in a career if a professional use their skill sets, determination or perserverance to achieve new career height.
An example of a career advancement is when an employee progresses from entry-level position to management and transits from an occupation to another.
Therefore, the Option A is correct.
Read more about career advancement
<em>brainly.com/question/7053706</em>
<h3><u>The distance between the two stations is</u><u> </u><u>3</u><u>7</u><u>.</u><u>0</u><u>8</u><u> km</u></h3>

Explanation:
<h2>Given:</h2>








<h2>Required:</h2>
Distance from Station A to Station B

<h2>Equation:</h2>




<h2>Solution:</h2><h3>Distance when a = 0.4 m/s²</h3>
Solve for 





Solve for 




Solve for 





<h3>Distance when a = 0 m/s²</h3>



Solve for 





Solve for 




Solve for 





<h3>Distance when a = -0.8 m/s²</h3>



Solve for 






Solve for 




Solve for 





<h3>Total Distance from Station A to Station B</h3>





<h2>Final Answer:</h2><h3><u>The distance between the two stations is </u><u>3</u><u>7</u><u>.</u><u>0</u><u>8</u><u> km</u></h3>
Answer:
The rate of cell metabolism is limited by mass transfer since the value of maximum cell concentration obtained (38 g/l) is lower than 50 g l-1, the value planed.
Explanation:
Data
<u>kLa</u> = 0.17/s
<u>Solubility of oxygen</u> = 8 × 10^-3 kg / m^3
<u>The maximum specific oxygen uptake rate </u>= 4 mmol O2 / g h.
<u>Concentration of oxygen</u> = 0.5 × 10^-3 kg/ m^3
<u>**The maximum cell density</u> = 50 g/l
___________________
The calculated maximum cell concentration:
xmax= kLa · CAL*/ qo
CAL* is the solubility of oxygen in the broth and qo is the specific oxygen uptake rate
Replacing the data given
xmax= ( 0.17/s ) · (8 × 10^-3 kg / m^3) / 4 mmol O2 / g h
4 mmol O2 / g h to kg O2/ g s

= 3.56 x 10^-3 kg O2/ g s
So then,
xmax= ( 0.17/s ) · (8 × 10^-3 kg / m^3) / 3.56 x 10^-3 o kg O2/ g s
xmax= 3. 8 x 10^4 g/ m^3 = 38 g/l
_____________________
Answer:
(a) E = 0 N/C
(b) E = 0 N/C
(c) E = 7.78 x10^5 N/C
Explanation:
We are given a hollow sphere with following parameters:
Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C
R = radius of sphere = 26.1 cm = 0.261 m
Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²
The formula for the electric field intensity is:
E = (1/4πεo)(Q/r²)
where, r = the distance from center of sphere where the intensity is to be found.
(a)
At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.
<u>E = 0 N/C</u>
(b)
Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).
<u>E = 0 N/C</u>
(c)
Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:
E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]
<u>E = 7.78 x10^5 N/C</u>