Answer:
you have only seconds in which a person will accept or reject an employee or firm
Explanation:
First impression matters that's why when looking for employment with an organisation, lack of a tie for men may lead to automatic rejection. You have to be smart both intellectually and physically. Therefore, it means that you have only seconds in which a person will accept or reject an employee or firm.
Answer:
For civil engineering, the importance is that you want to ensure that your construction is in a good sturdy location.
Explanation:
Im at UNCC as a civil engineering student
Answer:
d. 90%
Explanation:
As we know that internal combustion engine produce lot's of toxic gases to reduce these toxic gases in the environment a device is used and this device is know as current modeling converter.
Generally the efficiency of current model catalytic converter is more than 90%.But the minimum efficiency this converter is 90%.
So option d is correct.
d. 90%
Answer:
The tension in the rope at the lowest point is 270 N
Explanation:
Given;
weight of the ball, W = 150 N
length of the rope, r = 4 m
velocity of the ball, v = 5.6 m/s
When the ball passes through the lowest point, the tension on the rope is the sum of weight of the ball and centripetal force.
T = W + F
Centripetal force, F = mv²/r
where;
m is the mass of the ball
m = W/g
m = 150 / 9.8 = 15.306 kg
Centripetal force, F = mv²/r
F = (15.306 x 5.6²)/4
F = 120 N
T = W + F
T = 150 + 120
T = 270 N
Therefore, the tension in the rope at the lowest point is 270 N
Answer:
Explanation:
Given conditions
1)The stress on the blade is 100 MPa
2)The yield strength of the blade is 175 MPa
3)The Young’s modulus for the blade is 50 GPa
4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.
5)The temperature of the blade is 800°C.
6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)
where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K
Young Modulus, E = Stress,
/Strain, ∈
initial Strain, 


creep rate in the steady state


but Tinitial = 0


solving the above equation,
we get
Tfinal = 2459.82 hr