Answer:
Series circuit:
The voltage that is measured across the circuit is different.
The current measured in a series circuit remains the same at all points in the circuit.
Parallel circuit:
The current measured across each resistor varies
The voltage measured across a parallel circuit will remain the same
Explanation:
Series and parallel circuits behave differently when it comes to the circulation of current and the interaction with a potential difference.
In a series circuit, the resistances are connected end to end. As a result, the voltage that is measured across the circuit is different once resistance is encountered. However, the current measured in a series circuit remains the same at all points in the circuit.
A parallel circuit behaves in an exactly opposite manner to the series circuit. In a parallel circuit, the resistances are connected side by side. As a result of this, the current measured across each resistor varies as there are circuit branches through which electric current can flow into. On the other hand, the voltage measured across a parallel circuit will remain the same
Answer: A projectile is any object in which the only force is gravity
Explanation: Equations on how to calculate projectile velocity is stated below:
The initial velocity Vo being a vector quantity, has two componentsVox and Voy
V0x = V0 cos(θ)
V0y = V0 sin(θ)
The acceleration A is a also a vector with two components Axand Ay given
Ax = 0 and Ay = - g = - 9.8 m/s2
Along the x axis the acceleration is equal to 0 and therefore the velocity Vx is constant
Vx = Vocos(θ)
Along the y axis, the acceleration is uniform and equal to - g and the velocity at time t is g
Vy = Vo sin(θ) - g t
Along the x axis the velocity Vx is constant and therefore the component x of the displacement is
x = Vocos(θ) t
Along the y axis, the motion is of uniform acceleration and the y component of the displacement is
y = Vo sin(θ) t - (1/2) g t2
What are the choices ?
Without some directed choices, I'm, free to make up any
reasonable statement that could be said about Kevin in this
situation. A few of them might be . . .
-- Kevin will have no trouble getting back in time for dinner.
-- Kevin will have no time to enjoy the scenery along the way.
-- Some simple Physics shows us that Kevin is out of his mind.
He can't really do that.
-- Speed = (distance covered) / (time to cover the distance) .
If time to cover the distance is zero, then speed is huge (infinite).
-- Kinetic energy = (1/2) (mass) (speed)² .
If speed is huge (infinite), then kinetic energy is huge squared (even more).
There is not enough energy in the galaxy to push Kevin to that kind of speed.
-- Mass = (Kevin's rest-mass) / √(1 - v²/c²)
-- As soon as Kevin reaches light-speed, his mass becomes infinite.
-- It takes an infinite amount of energy to push him any faster.
-- If he succeeds somehow, his mass becomes imaginary.
-- At that point, he might as well turn around and go home ...
if he ever reached Planet-Y, nobody could see him anyway.
Answer:
The correct answer will be-
1. Dependent variable- The growth of plant in the form of height
2. Independent variable- different temperature
3. Constant variable- The amount of water, amount of sunlight, type of soil.
Explanation:
A Scientific experiment must include three types of variables which are: The independent, dependent and the constant variable.
1. Independent variable- The variable which can be modified or changed either on its own or manually. The variable directly influences the variable to be studied. In the given condition, the independent variable is the different temperature provided to the plants.
2. Dependent variable- The variable which is being studied in the experiment and directly influenced by the independent variable is the growth of the plant which is measured in the form of height.
3. Constant variable- The variable which is kept constant throughout the experiment and remains the same which could be the amount of water amount of sunlight and type of soil.