Answer:
Explanation:
Considering non - relativistic approach : ----
Speed of electron = 1 % of speed of light
= .01 x 3 x 10⁸ m /s
= 3 x 10⁶ m /s
Kinetic energy of electron = 1/2 m v²
= .5 x 9.1 x 10⁻³¹ x ( 3 x 10⁶ )²
= 40.95 x 10⁻¹⁹ J
Kinetic energy in electron comes from lose of electrical energy equal to
Ve where V is potential difference under which electron is accelerated and e is electronic charge .
V x e = kinetic energy of electron
V x 1.6 x 10⁻¹⁹ = 40.95 x 10⁻¹⁹
V = 25.6 Volt .
Answer:
0.099C
Explanation:
First, we need to get the common potential voltage using the formula
Where V is the common voltage, C and V represent capacitance and charge respectively. Subscripts 1 and 2 to represent the the first and second respectively. Substituting the above with the following given values then
Therefore
Charge, Q is given by CV hence for the first capacitor charge will be
Here,
The kinetic energy of an object increases as its decreases <span>its potential energy as the sum of energy will remain constant.
In short, Your Answer would be "Decreases"
Hope this helps!</span>
The amount of heat energy required to raise the temperature of a unit mass of a material to one degree is called D. its heat capacity.
The relationship of the heat when applied to the object and the change in temperature of the object when heat is being applied is directly proportional to each other. This means that when heat is applied to the object, the temperature of the object increases and when heat is not applied to the object, the temperature of the object decreases.