Answer:
lowest frequency = 535.93 Hz
distance between adjacent anti nodes is 4.25 cm
Explanation:
given data
length L = 32 cm = 0.32 m
to find out
frequency and distance between adjacent anti nodes
solution
we consider here speed of sound through air at room temperature 20 degree is approximately v = 343 m/s
so
lowest frequency will be =
..............1
put here value in equation 1
lowest frequency will be =
lowest frequency = 535.93 Hz
and
we have given highest frequency f = 4000Hz
so
wavelength =
..............2
put here value
wavelength =
wavelength = 0.08575 m
so distance =
..............3
distance =
distance = 0.0425 m
so distance between adjacent anti nodes is 4.25 cm
Answer: 22.6 hours
Explanation:
The power is the measure of the rate of energy.
In this problem, the 12.0 V battery is rated at 51.0 Ah, which means it delivers 51.0 A of current in a time of t = 1 h = 3600 s. The power delivered by the battery can be written as

where
I is the current
V = 12.0 V is the voltage of the battery
So the energy delivered by the battery can be written as

Where

So the energy delivered is

At the same time, the headlight consumes 27.0 W of power, so 27 Joules of energy per second; Therefore, it will remain on for a time of:

Answer:
Explanation:
Momentum conservation

Kinetic energy conservation

Solve the system
Answer:
Magnetic field experienced = 4.5 × 10⁻⁴ T
Explanation:
The magnetic field around an infinite straight current-carrying wire at a distance r from the wire is given by
B = (μ₀I)/(2πr)
B = ?
I = 20 KA = 20000 A
r = 8.9 m
μ₀ = magnetic permeability = 1.257 × 10⁻⁶ T.m/A
B = (1.257 × 10⁻⁶ × 20000)/(2π×8.9) = 4.5 × 10⁻⁴ T