Mass of Na2SO4= 514.18 grams
<h3>Further explanation</h3>
Given
423.67 g of NaCl
Required
mass of Na2SO4
Solution
Reaction
2NaCl + H2SO4 → Na2SO4 + 2HCl
mol NaCl :
= 423.67 g : 58.5 g/mol
= 7.24
From the equation, mol Na2SO4 :
= 1/2 x mol NaCl
= 1/2 x 7.24
= 3.62
Mass Na2SO4 :
= 3.62 mol x 142,04 g/mol
= 514.18 grams
Answer:
See Explanation Below
Explanation:
A) The rate law can only be on the reactant side and you can only determine it after you get the net ionic equation because of spectators cancelling out. So in this case the rate law is k=[CH3Br]^1 [OH-]^1. The powers are there because the rxn is first order.
B) Since the rxn is first order anything you do to it will be the exact same "counter rxn" per say so since you are decreasing the OH- by 5 the rate will decease by 5
C) The rate will increase by 4 since you are doubling both you have to multiply them both.
Answer:
0.38
Explanation:
Molar mass of thiophene= 84g/mol
Mass of thiophene = 37g
Number of moles= 37/84= 0.44 moles
Molar mass of heptane= 100 g/mol
Mass of heptane = 72g
Number of moles = 72/100= 0.72 moles
Total number of moles= 0.44 + 0.72= 1.16 moles
mole fraction of thiophene = 0.44/1.16= 0.38
Polar molecules exhibit an unequal balance of charges between the individual elements of the compound. This is brought about by the large difference in their electronegativities. The H atom has the least amount of electronegativity. Then, it is a known periodic trend, that as you go downwards in a group, electronegativity decreases, and increase as you go from left to right. Thus, you can deduce that the most electronegative elements are found in the upper right corner which includes O, N and F atoms. Any bond created between Hydrogen and any of O, N and F atoms is a polar bond.
2 moles of NO3 contains 6 moles of O