1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sliva [168]
3 years ago
14

The second law of motion is also known as

Physics
1 answer:
Gnesinka [82]3 years ago
8 0
The Law Of Force And Acceleration.
You might be interested in
Given 1 inch ≡ 2.54 cm and 1 foot ≡
d1i1m1o1n [39]

Answer:

2991.47 [cm^2]

Explanation:

To solve this problem we must perform a dimensional analysis and use the corresponding conversion values:

3.22[ft^{2}]*\frac{12^{2}in^{2} }{1^{2}ft^{2}} *\frac{2.54^{2}cm^{2}  }{1^{2}in^{2} } \\2991.47[cm^{2}]

3 0
3 years ago
A uniform rod of mass 1.90 kg and length 2.00 m is capable of rotating about an axis passing through its centre and perpendicula
astraxan [27]

Complete Question:

A uniform rod of mass 1.90 kg and length 2.00 m is capable of rotating about an axis passing through its center and perpendicular to its length. A mass m1 = 5.40 kgis  attached to one end and a second mass m2 = 2.50 kg is attached to the other end of the rod. Treat the two masses as point particles.

(a) What is the moment of inertia of the system?

(b) If the rod rotates with an angular speed of 2.70 rad/s, how much kinetic energy does the system have?

(c) Now consider the rod to be of negligible mass. What is the moment of inertia of the rod and masses combined?

(d) If the rod is of negligible mass, what is the kinetic energy when the angular speed is 2.70 rad/s?

Answer:

a) 8.53 kg*m² b) 31.1 J c) 7.9 kg*m² d) 28.8 J

Explanation:

a) If we treat to the two masses as point particles, the rotational inertia of each mass will be the product of the mass times the square of the distance to the axis of rotation, which is exactly the half of the length of the rod.

As the mass has not negligible mass, we need to add the rotational inertia of the rod regarding an axis passing through its centre, and perpendicular to its length.

The total rotational inertia will be as follows:

I = M*L²/12 + m₁*r₁² + m₂*r₂²

⇒ I =( 1.9kg*(2.00)²m²/12) + 5.40 kg*(1.00)²m² + 2.50 kg*(1.00)m²

⇒ I =  8.53 kg*m²

b)  The rotational kinetic energy of the rigid body composed by the rod and  the point masses m₁ and m₂, can be expressed as follows:

Krot = 1/2*I*ω²

if ω= 2.70 rad/sec, and I = 8.53 kg*m², we can calculate Krot as follows:

Krot = 1/2*(8.53 kg*m²)*(2.70)²(rad/sec)²

⇒ Krot = 31.1 J

c) If the mass of the rod is negligible, we can remove its influence of the rotational inertia, as follows:

I = m₁*r₁² + m₂*r₂² = 5.40 kg*(1.00)²m² + 2.50 kg*(1.00)m²

I = 7.90 kg*m²

d) The new rotational kinetic energy will be as follows:

Krot = 1/2*I*ω² = 1/2*(7.9 kg*m²)*(2.70)²(rad/sec)²

Krot= 28.8 J

7 0
3 years ago
When the plutonium bomb was tested in New Mexico in 1945, approximately 1 gram of matter was converted into energy. Suppose anot
gayaneshka [121]

Answer:

The value is E =  1.35 *10^{14} \ J

Explanation:

From the question we are told that

    The mass of matter converted to energy on first test is  m  =  1 \  g  = 0.001 \  kg

    The mass of matter converted to energy on second test m_1 =  1.5 \  g = 1.5 *10^{-3} \ kg

    Generally the amount of energy that was released by  the explosion is  mathematically  represented as  

         E =  m * c^2

=>       E =  1.5 *10^{-3}  * [ 3.0 *10^{8}]^2

=>       E =  1.35 *10^{14} \ J

7 0
3 years ago
Katy works at a pet store, and is in charge of tracking the cat food supply for the morning, afternoon, and evening shifts. Ther
Basile [38]
The cats have full bowls in the morning and afternoon, Katy can assume that the cats do not eat in the morning or afternoon. The bowls are replenished in the evening, which suggests that they become empty in the evening, which suggest that the pattern is that the cats eat in the evening so your answer would be C. Hope this helps. ;)
7 0
3 years ago
Read 2 more answers
Which object had more potential energy when it was lifted to a distance of 1000 centimeters? Show your calculation.
RSB [31]

Explanation:

We Know That

POTENTIAL ENERGY= MASS*g*HEIGHT

When the objects are lifted to same height then the object with heavier mass would have the highest potential energy

.

5 0
2 years ago
Other questions:
  • Magma can partially crystallize at depth and then rise to shallow depths where the remaining magma solidifies. the early-formed
    11·1 answer
  • What is the theory of plate tectonics? Question 15 options: A.the theory that earth's surface consists of separate plates that m
    10·2 answers
  • On a cold winters da,y,If you left a drink setting outside,it could freeze.Explain why in a complete sentence
    10·1 answer
  • A biker first accelerates from 0.0 m/s to 6.0 m/s in 6 s, then continues at this speed for 5 s. What is the total distance trave
    8·1 answer
  • The speed of light is 3 x 10 m/s.
    15·1 answer
  • Giving 25 points need help ASAP!
    8·1 answer
  • 1.25 is the closest to 1.04 or not I want to answer please. I think it's true, but I want to prove it scientifically, please.
    6·1 answer
  • Two planes fly in opposite directions. One travels 450 mi/h and the other flies 550 mi/h. How long will it take before they are
    6·1 answer
  • A box sits at the top of an incline that is 50.0 cm tall and that makes an angle of 25° with the ground. The box has a mass of
    15·1 answer
  • How does science involve creativity
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!