Where are the questions answer key
Answer:
p orbitals only
Explanation:
Carbon has an atomic number of 6 so its electron configuration will be 1s² 2s² 2p². It has two orbitals as indicated with the 2 as its period number with the outer orbital have 4 valence electrons. So carbon is in the p-orbital, period 2 and in group 4.
Because metallic bonding is non-localized, and extends throughout the metallic lattice. Metal nuclei can move with respect to other metal nuclei without disrupting the forces of attraction.
Answer:
Br
|
Br-P-Br
|
Br
Explanation:
To calculate the valance electrons, look at the periodic table to find the valance electrons for each atom and add them together. P is in column 5A, so it has 5, Br is in column 7A, so it has 7 (multiply by 4 since there are 4 Br atoms to give 28) and there is a 1- charge, so add one more electron. 5+28+1=34, so there are 34 electrons to place. P would be the central atom, so place it in the middle. Place each Br around the P (as shown above) with a a single line connecting it. Each line represents 2 electrons, so 8 total have been place, leaving 26 remaining. Place 6 electrons around each Br (2 on each of the unbonded sides), which leaves 2 electrons remaining. The remaining pair of unbound electrons will be attached to the P between any two Br atoms. Phosphorus doesn't have to follow the octet rule, so it actually ends up with 10 valance electrons.
Answer:
A
Chemical reaction rates vary with the conditions of the reaction, but nuclear decay rates are constant.
Explanation:
B/c chem reactions can be affected by temperature, pressure, etc. whereas, nuclear decays are constant. The decay rate itself is measured over a long period of time and it remains constant I believe.