<span>We first calculate the velocity of the ball when it hits the ground; this is equal to the square root of the quantity (2*g*d) where g is the acceleration of gravity (9.8 m/s^2) and d is the distance fallen, 1.5m.
So, we get a velocity of sqrt(2*9.8*1.5) = 5.42 m/s.
We can calculate the impulse force applied to the putty ball by using Newton's second law, which states that the applied force is equal to the product of mass and acceleration, where acceleration can be further decomposed as the change in velocity divided by the change in time. Thus, inputting the known values, we have:
F = ma = m(dv/dt) = 1.0*5.42/0.045 = 120.4 newtons.</span>
B i like to believe :))))
explain: 73626262hdjsgsgagfjnbvfsad
I’m pretty sure it’s kinetic energy
A) 140 degrees
First of all, we need to find the angular velocity of the Ferris wheel. We know that its period is
T = 32 s
So the angular velocity is

Assuming the wheel is moving at constant angular velocity, we can now calculate the angular displacement with respect to the initial position:

and substituting t = 75 seconds, we find

In degrees, it is

So, the new position is 140 degrees from the initial position at the top.
B) 2.7 m/s
The tangential speed, v, of a point at the egde of the wheel is given by

where we have

r = d/2 = (27 m)/2=13.5 m is the radius of the wheel
Substituting into the equation, we find

Answer:
The mercury in the barometer will go down as there is less air pressing down on the bulb of the barometer to push mercury up.
Explanation: