It was in Texas on September 8, 1900.
Answer:
The current across the resistance is 0.011 A.
Explanation:
Total resistance, R = 25 ohms
Total current, I = 100 mA = 0.1 A
Let the voltage is V.
By the Ohm's law
V = I R
V = 0.1 x 25 = 2.5 V
Now the resistance is R' = 220 ohm
As they are in parallel so the voltage is same. Let the current is I'.
V = I' x R'
2.5 = I' x 220
I' = 0.011 A
Answer:
the frequency of the second harmonic of the pipe is 425 Hz
Explanation:
Given;
length of the open pipe, L = 0.8 m
velocity of sound, v = 340 m/s
The wavelength of the second harmonic is calculated as follows;
L = A ---> N + N--->N + N--->A
where;
L is the length of the pipe in the second harmonic
A represents antinode of the wave
N represents the node of the wave

The frequency is calculated as follows;

Therefore, the frequency of the second harmonic of the pipe is 425 Hz.
That n2 = 2*n1. That is, the index of refraction is twice as big in medium 2 since v=c/n
Increasing its velocity will add to the kinetic energy more as the formula for kinetic energy is 0.5*m*v^2. (The speed will be squared making it greater)