1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Galina-37 [17]
3 years ago
6

As Energy is added to ice, what happens to the temperature over time and why?

Engineering
2 answers:
Reil [10]3 years ago
5 0

As ice melts into water, kinetic energy is being added to the particles. This causes them to be 'excited' and they break the bonds that hold them together as a solid, resulting in a change of state: solid -> liquid.

oksian1 [2.3K]3 years ago
4 0

Answer:

As ice melts into water, kinetic energy is being added to the particles. This causes them to be 'excited' and they break the bonds that hold them together as a solid, resulting in a change of state: solid -> liquid.

Explanation:

You might be interested in
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
saveliy_v [14]

Complete Question

For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 470 mm (18.50 in.)?Assume a value of 0.22 for the strain-hardening exponent, n.

Answer:

The elongation is =21.29mm

Explanation:

In order to gain a good understanding of this solution let define some terms

True Stress

       A true stress can be defined as the quotient obtained when instantaneous applied load is divided by instantaneous cross-sectional area of a material it can be denoted as \sigma_T.

True Strain

     A true strain can be defined as the value obtained when the natural logarithm quotient of instantaneous gauge length divided by original gauge length of a material is being bend out of shape by a uni-axial force. it can be denoted as \epsilon_T.

The mathematical relation between stress to strain on the plastic region of deformation is

              \sigma _T =K\epsilon^n_T

Where K is a constant

          n is known as the strain hardening exponent

           This constant K can be obtained as follows

                        K = \frac{\sigma_T}{(\epsilon_T)^n}

No substituting  345MPa \ for  \ \sigma_T, \ 0.02 \ for \ \epsilon_T , \ and  \ 0.22 \ for  \ n from the question we have

                     K = \frac{345}{(0.02)^{0.22}}

                          = 815.82MPa

Making \epsilon_T the subject from the equation above

              \epsilon_T = (\frac{\sigma_T}{K} )^{\frac{1}{n} }

Substituting \ 411MPa \ for \ \sigma_T \ 815.82MPa \ for \ K  \ and  \  0.22 \ for \ n

       \epsilon_T = (\frac{411MPa}{815.82MPa} )^{\frac{1}{0.22} }

            =0.0443

       

From the definition we mentioned instantaneous length and this can be  obtained mathematically as follows

           l_i = l_o e^{\epsilon_T}

Where

       l_i is the instantaneous length

      l_o is the original length

Substituting  \ 470mm \ for \ l_o \ and \ 0.0443 \ for  \ \epsilon_T

             l_i = 470 * e^{0.0443}

                =491.28mm

We can also obtain the elongated length mathematically as follows

            Elongated \ Length =l_i - l_o

Substituting \ 470mm \ for l_o and \ 491.28 \ for \ l_i

          Elongated \ Length = 491.28 - 470

                                       =21.29mm

4 0
4 years ago
A copper-nickel alloy of composition 60 wt% Ni-40 wt% Cu is slowly heated from a temperature of 1250°C (2280 °F). (a) At what te
makkiz [27]

Answer:

a. The very first liquid process, when heated from 1250 degree Celsius, is expected to form at the temperature by which the vertical line crosses the phase boundary (a -(a + L)) which is about <em>1310 degree Celsius. </em>

b. The structure of that first liquid is identified by the intersection with ((a+ L)-L) phase boundary; <em>47wt %of Ni</em> is of a tie line formed across the (a+ L) phase area <em>at 1310 degrees.</em>

c. To find the alloy's full melting, it is determined that the intersection of the same vertical line at 60 wt percent Ni with (a -(a+L)) phase boundary is around <em>1350 degrees.</em>

c. The structure of the last remaining solid before full melting correlates to the intersection with the phase boundary (a -(a + L), of the tie line built at 1350 degrees across the (a + L) phase area, <em>being 72wt % of Ni.</em>

4 0
3 years ago
how is friction losses in pipes reduced? a. decrease the pipe diameter b. increase the length of the pipes. c. decrease the leng
Citrus2011 [14]

Friction losses in pipes can be reduced by decreasing the length of the pipes, reducing the surface roughness of the pipes, and increasing the pipe diameter. Thus, options (c),(e), and (f) hold correct answers.

Friction loss is a measure of the amount of energy a piping system loses because flowing fluids meet resistance. As fluids flow through the pipes, they carry energy with them. Unfortunately, whenever there is resistance to the flow rate, it diverts fluids, and energy escapes. These opposing forces result in friction loss in pipes.

Friction loss in pipes can decrease the efficiency of the functions of pipes. These are a few ways by which friction loss in pipes can be reduced and the efficiency of the piping system can be boosted:

  • <u><em>Decrease the length of the pipes</em></u>: By decreasing pipe lengths and avoiding the use of sharp turns, fittings, and tees, whenever possible result in a more natural path for fluids to flow.
  • <u><em>Reduce the surface roughness of the pipes</em></u>:  By reducing the interior surface roughness of pipes, a smooth and clearer path is provided for liquids to flow.
  • <u><em>Increase the pipe diameter: </em></u>By widening the diameters of pipes, it is ensured that fluids squeeze through pipes easily.

You can learn more about friction losses at

brainly.com/question/13348561

#SPJ4

3 0
1 year ago
I wish to have a computer whose machine-level instructions are all 32 bits each. If I want to have all instructions of the form
melisa1 [442]

Answer:

Maximum number that can be represented by 13 bits  is 8192 Instructions

Explanation:

number of instructions = 1000

number of bits = log(1000) x number of register

                          = 6 bits

Since the complete instruction must have 32 bits, then

remaining number of bits = 32 - 6 = 236

number of registers in instruction = 2

number of bits per register = 26/2 = 13

Maximum number that can be represented by 13 bits = 2^{n}

                       = 2¹³ = 8192

4 0
4 years ago
Jackson Water Department wants a program that calculates a customer's monthly water bill. The clerk will enter the current and p
valentinak56 [21]

Answer:

See attached images

Explanation:

See attached images

Hope this helps!

4 0
3 years ago
Other questions:
  • What is shown in the above figure?
    11·2 answers
  • Define various optical properties of engineering materials
    11·1 answer
  • Steam undergoes an isentropic compression in an insulated piston–cylinder assembly from an initial state where T1 5 1208C, p1 5
    15·1 answer
  • A sample of sand weighs 490 g in stock and 475 in Oven Dry (OD) condition, respectively. If absorption capability of the sand is
    6·1 answer
  • The current flow in an NMOS transistor is due to one of the following:
    11·1 answer
  • Im passed due someone help meeeeeee
    7·2 answers
  • Compared with space operations specialists, intelligence officers are which of the following?
    7·1 answer
  • Materials to be used to build a watch tower​
    9·1 answer
  • Me ayudas plis noce ​
    14·1 answer
  • Where would the impossible amount of product 1 and 2 points intersect on the production possibility curve
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!