Answer:
(a)
<em>d</em>Q = m<em>d</em>q
<em>d</em>q =
<em>d</em>T
=
(T₂ - T₁)
From the above equations, the underlying assumption is that
remains constant with change in temperature.
(b)
Given;
V = 2L
T₁ = 300 K
Q₁ = 16.73 KJ , Q₂ = 6.14 KJ
ΔT = 3.10 K , ΔT₂ = 3.10 K for calorimeter
Let
be heat constant of calorimeter
Q₂ =
ΔT
Heat absorbed by n-C₆H₁₄ = Q₁ - Q₂
Q₁ - Q₂ = m
ΔT
number of moles of n-C₆H₁₄, n = m/M
ρ = 650 kg/m³ at 300 K
M = 86.178 g/mol
m = ρv = 650 (2x10⁻³) = 1.3 kg
n = m/M => 1.3 / 0.086178 = 15.085 moles
Q₁ - Q₂ = m
' ΔT
= (16.73 - 6.14) / (15.085 x 3.10)
= 0.22646 KJ mol⁻¹ k⁻¹
Answer:
Explanation:
Find attached the solution to the question
Answer:
(a) 11.437 psia
(b) 13.963 psia
Explanation:
The pressure exerted by a fluid can be estimated by multiplying the density of the fluid, acceleration due to gravity and the depth of the fluid. To determine the fluid density, we have:
fluid density = specific gravity * density of water = 1.25 * 62.4 lbm/ft^3 = 78 lbm/ft^3
height = 28 in * (1 ft/12 in) = 2.33 ft
acceleration due to gravity = 32.174 ft/s^2
The change in pressure = fluid density*acceleration due to gravity*height = 78*32.174*(28/12) = 5855.668 lbm*ft/(s^2 * ft^2) = 5855.668 lbf/ft^2
The we convert from lbf/ft^2 to psi:
(5855.668/32.174)*0.00694 psi = 1.263 psi
(a) pressure = atmospheric pressure - change in pressure = 12.7 - 1.263 = 11.437 psia
(b) pressure = atmospheric pressure + change in pressure = 12.7 + 1.263 = 13.963 psia
Cadastral surveying is the sub-field of cadastre and surveying that specialises in the establishment and re-establishment of real property boundaries. ... A cadastral surveyor must apply both the spatial-measurement principles of general surveying and legal principles such as respect of neighboring titles.
Answer:
The coattail effect
Explanation:
Clearly, the Daggies franchise were a huge part of Marco's success and attracted many customers for the business. This is why Marco deteriorated as soon as many Daggies franchisees closed.
The coattail effect is the phenomenon where an influencing member in a party (franchisee in this case) contributes largely to the success of another, which is the case with Marco and Daggies