Answer:
Maximum height reached by the ball is 32 meters.
Explanation:
It is given that,
If a baseball is project upwards from the ground level with an initial velocity of 32 feet per second, then it's height is a function of time. The equation is given as :
...........(1)
t is the time taken
s is the height attained as a function of time.
Maximum height achieved can be calculated as :


-16 t + 32 = 0
t = 2 seconds
Put the value of t in equation (1) as :

s = 32 meters
So, the maximum height reached by the ball is 32 meters. Hence, this is the required solution.
It runs slower <span>as gravity is lower so acceleration due to gravity is smaller</span>
Answer:
2442.5 Nm
Explanation:
Tension, T = 8.57 x 10^2 N
length of rope, l = 8.17 m
y = 0.524 m
h = 2.99 m
According to diagram
Sin θ = (2.99 - 0.524) / 8.17
Sin θ = 0.3018
θ = 17.6°
So, torque about the base of the tree is
Torque = T x Cos θ x 2.99
Torque = 8.57 x 100 x Cos 17.6° x 2.99
Torque = 2442.5 Nm
thus, the torque is 2442.5 Nm.
Answer: because they have equal numbers of protons
Explanation: Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). If an atom gains or loses one or more electrons, it becomes an ion
<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>