For plato users
the answer is a. O2(l) O2(g)
hope this helps!
The final molarity of HCl is 2.284 M
We'll begin by listing what was given from the question. This is shown below:
Initial volume (V₁) = 5.56 mL
Initial Molarity (M₁) = 4.108 M
Final volume (V₂) = 5.56 + 4.44 = 10 mL
<h3>Final Molarity (M₂) =? </h3>
The final molarity of the HCl solution can be obtained by using the dilution formula as illustrated below:
<h3>M₁V₁ = M₂V₂</h3>
4.108 × 5.56 = M₂ × 10
22.84048 = M₂ × 10
Divide both side by 10
M₂ = 22.84048 / 10
<h3>M₂ = 2.284 M</h3>
Therefore, final molarity of the HCl solution is 2.284 M.
Learn more: brainly.com/question/6103588
Answer:
Explanation:
All of above except carbon dioxide
Answer:
0.29mol/L or 0.29moldm⁻³
Explanation:
Given parameters:
Mass of MgSO₄ = 122g
Volume of solution = 3.5L
Molarity is simply the concentration of substances in a solution.
Molarity = number of moles/ Volume
>>>>To calculate the Molarity of MgSO₄ we find the number of moles using the mass of MgSO₄ given.
Number of moles = mass/ molar mass
Molar mass of MgSO₄:
Atomic masses: Mg = 24g
S = 32g
O = 16g
Molar mass of MgSO₄ = [24 + 32 + (16x4)]g/mol
= (24 + 32 + 64)g/mol
= 120g/mol
Number of moles = 122/120 = 1.02mol
>>>> From the given number of moles we can evaluate the Molarity using this equation:
Molarity = number of moles/ Volume
Molarity of MgSO₄ = 1.02mol/3.5L
= 0.29mol/L
IL = 1dm³
The Molarity of MgSO₄ = 0.29moldm⁻³