Answer:
A) 21.2 kg.m/s at 39.5 degrees from the x-axis
Explanation:
Mass of the smaller piece = 200g = 200/1000 = 0.2 kg
Mass of the bigger piece = 300g = 300/1000 = 0.3 kg
Velocity of the small piece = 82 m/s
Velocity of the bigger piece = 45 m/s
Final momentum of smaller piece = 0.2 × 82 = 16.4 kg.m/s
Final momentum of bigger piece = 0.3 × 45 = 13.5 kg.m/s
since they acted at 90oc to each other (x and y axis) and also momentum is vector quantity; then we can use Pythagoras theorems
Resultant momentum² = 16.4² + 13.5² = 451.21
Resultant momentum = √451.21 = 21.2 kg.m/s at angle 39.5 degrees to the x-axis ( tan^-1 (13.5 / 16.4)
As we know that as per Newton's II law we have

here we will have
= change in momentum
= time interval in which momentum is changed
now in order to have least injury during jumping we need to have least force on the jumper
so in order to have least force we can say that the momentum must have to change in maximum time so that amount of force must be least
So we need to increase the time in which momentum of the system is changed
Unmmm to eat so we don't die
<h2>
Answer:
joules</h2>
Explanation:
From the first law of thermodynamics,
Δ
=Δ
+
Where
is the heat given to the gas,
is the internal energy of the gas,
is the workdone by the gas.
When pressure is constant,


When pressure is constant,
Δ
Where
is pressure and
is the volume of the gas.
Given 
Δ

So,
Given that Δ
So,Δ
