Answer:
t = 5.05 s
Explanation:
This is a kinetic problem.
a) to solve it we must fix a reference system, let's use a fixed system on the floor where the height is 0 m
b) in this system the equations of motion are
y = v₀ t + ½ g t²
where v₀ is the initial velocity that is v₀ = 0 and g is the acceleration of gravity that always points towards the center of the Earth
e) y = 0 + ½ g t²
t = √ (2y / g)
t = √(2 125 / 9.8)
t = 5.05 s
Answer:
100 newton
Explanation:
newton third law of motion says to every action there is an always an equal and opposite reaction so the magnitude will stay equal but opposite direction
Answer:
D. Graphing the force as a function of distance and calculating the area under the curve.
Explanation:
Answer:
The rate at which radar must rotate is 0.335 rad/s.
Explanation:
Given that,
Velocity = 65 m/h = 29.0576 m/s
Angle = 15°
Suppose, the radius given by

We need to calculate the rate at which radar must rotate
Using formula of linear velocity


Where, v = velocity
r = radius
Put the value into the formula


Hence, The rate at which radar must rotate is 0.335 rad/s.
Answer:
The velocity of wind with respect to cyclist is
.
Explanation:
speed of cyclist = 12 km/h east
speed of wind = 5 km/h south west
Write the speeds in the vector form

The velocity of wind with respect to cyclist is
