Answer:
In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as
c=4.18Jg∘C
Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.
Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of 1 g of that substance by 1∘C.
In water's case, you need to provide 4.18 J of heat per gram of water to increase its temperature by 1∘C.
What if you wanted to increase the temperature of 1 g of water by 2∘C ?
This will account for increasing the temperature of the first gram of the sample by n∘C, of the the second gramby n∘C, of the third gram by n∘C, and so on until you reach m grams of water.
And there you have it. The equation that describes all this will thus be
q=m⋅c⋅ΔT , where
q - heat absorbed
m - the mass of the sample
c - the specific heat of the substance
ΔT - the change in temperature, defined as final temperature minus initial temperature
In your case, you will have
q=100.0g⋅4.18Jg∘C⋅(50.0−25.0)∘C
q=10,450 J
Carbon-6 because it is a neutron number
Answer:
B?
Explanation:
In the example, the amount of hydrogen is 202,650 x 0.025 / 293.15 x 8.314472 = 2.078 moles. Use the mass of the hydrogen gas to calculate the gas moles directly; divide the hydrogen weight by its molar mass of 2 g/mole. For example, 250 grams (g) of the hydrogen gas corresponds to 250 g / 2 g/mole = 125 moles.
Answer:
Solubility is a chemical property referring to the ability for a given substance, the solute, to dissolve in a solvent. It is measured in terms of the maximum amount of solute dissolved in a solvent at equilibrium. ... Certain substances are soluble in all proportions with a given solvent, such as ethanol in water.
Explanation:
Answer:
light energy is converted to chemical energy during photosynthesis.
Explanation:
Law of conservation of energy says: Energy can neither be created nor destroyed-only converted from one form of energy to another.