Answer:
electrons located outside the nucleus
Explanation:
electrons are said to be located outside the nucleus of an atom and are in orbit around the nucleus.
according to Bohr in 1913.
Explanation:
Metals react with oxygen to form basic oxides while they react with water to form alkaline solutions. Also, acidic oxides are oxides of nonmetals and they react with water to form acidic solutions.
Trends on the period table shows the variation of metallic character as you move across and down the periodic table. Metallic character of a element decreases across the period on the periodic table from left to right because atoms readily accept electrons in their outermost shell to form stable configurations. Metallic character increases as you move down the group in the periodic table and this is because electrons become easier to lose as the atomic radius increases (more outer shells are added), where there is decreasing attraction between the nucleus and the valence electrons.
So down the group, the acidity of oxide reaction with water decreases because the oxides are more basic down the group while across the period, the acidity of oxide increases because acidic oxides are formed as we move across the period.
Answer:
a) The functional group that will be evident in the IR spectrum is the OH group.
b) OH group appears between 3200-3600 cm⁻¹
c) An important impurity that have the same functional group is water.
Explanation:
Eugenol is a chemical substance that consist in a benzene that have in 1 an alcohol, in position 2 a methyl ether and in position 4 an 1-propene bonded by the terminal alkyl carbon.
a) Having this in mind, the functional group that will be evident in the IR spectrum is the OH group.
b) This OH group appears between 3200-3600 cm⁻¹
c) An important impurity that have the same functional group is water. When you have water in your sample a big signal will appear in this zone and it is possible that overlapes the OH signal of eugenol.
I hope it helps!
Answer:
Density = mass/volume
= 44/22.4
= 1.96 gram/liter
The density of the Carbon Dioxide at S.T.P. (Standard Temperature and Volume) is 1.96 gram/liter.
Explanation:
Fusion vs Fission
In fission, energy is gained by splitting apart heavy atoms, for example uranium, into smaller atoms such as iodine, caesium, strontium, xenon and barium, to name just a few. However, fusion is combining light atoms, for example two hydrogen isotopes, deuterium and tritium, to form the heavier helium. Both reactions release energy which, in a power plant, would be used to boil water to drive a steam generator, thus producing electricity.