Answer:
Explanation:
In general, an increase in pressure (decrease in volume) favors the net reaction that decreases the total number of moles of gases, and a decrease in pressure (increase in volume) favors the net reaction that increases the total number of moles of gases.
Δn= b - a
Δn= moles of gaseous products - moles of gaseous reactants
Therefore, <u>after the increase in volume</u>:
- If Δn= −1 ⇒ there are more moles of gaseous reactants than gaseous products. The equilibrium will be shifted towards the products, that is, from left to right, and K>Q.
- If Δn= 0 ⇒ there is the same amount of gaseous moles, both in products and reactants. The system is at equilibrium and K=Q.
- Δn= +1 ⇒ there are more moles of gaseous products than gaseous reactants. The equilibrium will be shifted towards the reactants, that is, from right to left, and K<Q.
Answer:
s an example, the ground state configuration of the sodium atom is 1s22s22p63s1, as deduced from the Aufbau principle (see below). The first excited state is obtained by promoting a 3s electron to the 3p orbital, to obtain the 1s22s22p63p1 configuration, abbreviated as the 3p level.
Explanation:
Answer:
the mass of the products must equal the mass of reactants. which means the total mass is 10 grams.
Explanation:
Answer: No
Explanation: The snacks did not work because the result of the snails either stayed the same, or decreased.
Ionic bond is formed due to the transfer of electrons from one atom to another so that all atoms involved in the bond would become stable (with 8 electrons in the outermost level)
Now, for bromine, it has 35 electrons. This means that bromine has 7 valence electrons in the outermost level. Therefore, bromine needs to gain one electron in order to become stable.
Bromine can react with elements from:
group 1: each element in group 1 needs to lose one electron to become stable. Therefore, one bromine atom can form an ionic bond when combined with an atom of an element from group 1 (element in group 1 loses its electron for bromine atom).
group 2: each element in group 2 needs to lose two electrons to become stable. Therefore, two bromine atoms can form ionic bonds when combined with an atom of an element from group 2 (element in group 2 loses two electrons, one for each bromine atom).
group 3: each element in group 3 needs to lose three electrons to become stable. Therefore, three bromine atoms can form ionic bonds when combined with an atom of an element from group 1 (element in group 3 loses three electrons, one for each bromine atom).
Since no choices are given , I cannot tell the exact choice. But the correct one would be the element from either group 1 , 2 or 3.