1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Galina-37 [17]
2 years ago
13

Which question can be used to identify a physical property of an element?

Physics
2 answers:
olganol [36]2 years ago
7 0

Answer:

C. Do bubbles form when the element is mixed with an acid?

Explanation:

all the other options are incorrect because they are

BabaBlast [244]2 years ago
3 0

Answer:C

Explanation:

Do bubbles form when the element is mixed with an acid

You might be interested in
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
2 years ago
How much total surface of the moon is illuminated by the sun when it is at quarter phase?
alex41 [277]
50% of the moon is always illuminated, however during it's quarter phase means that we only see a quarter of what's really lit up. So it LOOKS like the moon is only 25% lit and 75% dark, it's truly 50/50. We only see that 25% since we can see it from one angle.
6 0
2 years ago
On a nice summer day,Kim takes her niece Madison for a walk in her stroller.If they start from rest and accelerate at a rate of
11111nata11111 [884]

2.5m/s

Explanation:

Given parameters:

Initial velocity = 0m/s

Acceleration = 0.5m/s²

time of travel = 5s

Solution:

Final velocity = ?

Solution:

Acceleration can be defined as the change in velocity with time:

          Acceleration = \frac{Final velocity - Initial velocity}{time}

  From the equation above, the unknown is final velocity:

Final velocity - initial velocity = Acceleration x time

 since initial velocity = 0

   Final velocity = 0.5 x 5 = 2.5m/s

Learn more:

Acceleration brainly.com/question/3820012

#learnwithBrainly

6 0
2 years ago
How much work is required to move
Nikitich [7]
The work is path independent since we have a conservative force.

Thus W=d\cdot\frac{q\cdot U}{d^2}=\frac{3.0\cdot9.0}{0.010}=\boxed{2700 J}

Answer (1)
6 0
3 years ago
Give at least one fact about subatomic particles
victus00 [196]

Answer:

- Particles smaller than atoms are called subatomic particles .

- There are three famous subatomic particles, proton, neutron and electron .

- The study of sub atomic particles are called particle physics

- These particles can be divided as Brayons and Leptons

- These particles are often held together by one of the four fundamental particles ( Weak force, strong force, electromagnetic force, gravitational force).

6 0
2 years ago
Other questions:
  • 5. Why should the electrons be placed separate from each other (why not together)?
    6·2 answers
  • A solid insulating sphere of radius R = 1.0 m that carries a positive charge Q1 = 1.0 mC uniformly distributed over it is concen
    7·1 answer
  • How much work does this force do as the particle moves along the x-axis from x = 0 to x = l? express your answer in terms of the
    12·1 answer
  • A classroom is about 3 meters high, 20 meters wide and 30 meters long. If the density of air is 1.29 kg/m3, what is the mass of
    6·2 answers
  • I just don't know how to do the question (a) and (b)​
    14·1 answer
  • A closely wound rectangular coil of 75.0 turns has dimensions of 22.0 cm by 45.0 cm . The plane of the coil is rotated from a po
    6·1 answer
  • State the rule that describes how a pulse will behave at a free-end.
    6·1 answer
  • At maximum height, the velocity is zero.
    13·1 answer
  • How can you make the work output of machine greater than the work input
    15·1 answer
  • Hello people ~
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!