Answer:
ΔT = 0.02412 s
Explanation:
We will simply calculate the time for both the waves to travel through rail distance.
FOR THE TRAVELING THROUGH RAIL:

FOR THE WAVE TRAVELING THROUGH AIR:

The separation in time between two pulses can now be given as follows:

<u>ΔT = 0.02412 s</u>
Answer:
TRUE
Explanation:
Protons have a positive charge. Electrons have a negative charge. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.
To develop this problem it is necessary to apply the optical concepts related to the phase difference between two or more materials.
By definition we know that the phase between two light waves that are traveling on different materials (in this case also two) is given by the equation

Where
L = Thickness
n = Index of refraction of each material
Wavelength
Our values are given as





Replacing our values at the previous equation we have




Therefore the thickness of the mica is 6.64μm
Answer:
10.2 Watt
Explanation:
= number of turns in flat coil = 160
= area = 0.20 m²
B₀= initial magnetic field = 0.40 T
= final magnetic field = - 0.40 T
Change in magnetic field is given as
ΔB = B - B₀ = - 0.40 - 0.40 = - 0.80 T
= time taken for the magnetic field to change = 2.0 s
Induced emf is given as


= 12.8 volts
= Resistance of the coil = 16 Ω
Power is given as


= 10.2 Watt
<span>5.82 x 10-49 joules7.62 x 10-19 joules8.77 x 10-12 joules1.09 x 10-12<span> joules </span><span>answer is b</span></span>