Impulse: a certain amount of force you apply for an amount of time.
Impulse: F*t where F= Force & t=time
Momentum: increasing forward motion.
A ball rolling down a slide gains momentum
p=mv where m=mass and v=velocity
Hope it helps!
~Just an emotional teen who listens to music
Answer:
A. 
B. 
C. 
Explanation:
The capacitance of a capacitor is its ability to store charges. For parallel-plate capacitors, this ability depends the material between the plates, the common plate area and the plate separation. The relationship is

is the capacitance,
is the common plate area,
is the plate separation and
is the permittivity of the material between the plates.
For air or free space,
is
called the permittivity of free space. In general,
where
is the relative permittivity or dielectric constant of the material between the plates. It is a factor that determines the strength of the material compared to air. In fact, for air or vacuum,
.
The energy stored in a capacitor is the average of the product of its charge and voltage.

Its charge,
, is related to its capacitance by
(this is the electrical definition of capacitance, a ratio of the charge to its voltage; the previous formula is the geometric definition). Substituting this in the formula for
,

A. Substituting for
in
,

B. When the distance is
,


C. When the distance is restored but with a dielectric material of dielectric constant,
, inserted, we have

The glowing beam was repelled by a negatively charged plate because they were negatively charged
<h3>What are the nature of charges?</h3>
The nature of charges refers to the properties of charges.
There are two types of charges:
- negative charges
- positive charges
The law of electricity states that opposite charges attract whereas like charges repel.
Therefor, in Thomson’s experiment, the glowing beam was repelled by a negatively charged plate because they were negatively charged
In conclusion, like charges repel while opposite charges attract.
Learn more about charges at: brainly.com/question/12781208
#SPJ1
I think that would be c) mirror because mirrors reflects light and can't create it.
Answer:
<em>1.01 W/m</em>
Explanation:
diameter of the pipe d = 30 mm = 0.03 m
radius of the pipe r = d/2 = 0.015 m
external air temperature Ta = 20 °C
temperature of pipe wall Tw = 150 °C
convection coefficient at outer tube surface h = 11 W/m^2-K
From the above,<em> we assumed that the pipe wall and the oil are in thermal equilibrium</em>.
area of the pipe per unit length A =
=
m^2/m
convectional heat loss Q = Ah(Tw - Ta)
Q = 7.069 x 10^-4 x 11 x (150 - 20)
Q = 7.069 x 10^-4 x 11 x 130 = <em>1.01 W/m</em>