Answer:
The velocity is ![v = 4.76 \ m/s](https://tex.z-dn.net/?f=v%20%3D%204.76%20%5C%20m%2Fs)
Explanation:
From the question we are told that
The first distance is ![d_1 = 4.0 \ km = 4000 \ m](https://tex.z-dn.net/?f=d_1%20%20%3D%20%204.0%20%5C%20km%20%20%3D%20%204000%20%5C%20m)
The first speed is ![v_1 = 5.0 \ m/s](https://tex.z-dn.net/?f=v_1%20%3D%20%205.0%20%5C%20m%2Fs)
The second distance is ![d_2 = 1.0 \ km = 1000 \ m](https://tex.z-dn.net/?f=d_2%20%20%3D%20%201.0%20%5C%20km%20%20%3D%20%201000%20%5C%20m)
The second speed is ![v_2 = 4.0 \ m/s](https://tex.z-dn.net/?f=v_2%20%20%3D%20%204.0%20%5C%20m%2Fs)
Generally the time taken for first distance is
![t_1 = \frac{d_1 }{v_1 }](https://tex.z-dn.net/?f=t_1%20%3D%20%20%5Cfrac%7Bd_1%20%7D%7Bv_1%20%7D)
![t_1 = \frac{4000}{5}](https://tex.z-dn.net/?f=t_1%20%3D%20%20%5Cfrac%7B4000%7D%7B5%7D)
![t_1 = 800 \ s](https://tex.z-dn.net/?f=t_1%20%3D%20%20800%20%5C%20s)
The time taken for second distance is
![t_1 = \frac{d_2 }{v_2 }](https://tex.z-dn.net/?f=t_1%20%3D%20%20%5Cfrac%7Bd_2%20%7D%7Bv_2%20%7D)
![t_1 = \frac{1000}{4}](https://tex.z-dn.net/?f=t_1%20%3D%20%20%5Cfrac%7B1000%7D%7B4%7D)
![t_1 = 250 \ s](https://tex.z-dn.net/?f=t_1%20%3D%20%20250%20%5C%20s)
The total time is mathematically represented as
![t = t_1 + t_2](https://tex.z-dn.net/?f=t%20%3D%20%20t_1%20%2B%20t_2)
=> ![t = 800 + 250](https://tex.z-dn.net/?f=t%20%3D%20%20800%20%2B%20250)
=> ![t = 1050 \ s](https://tex.z-dn.net/?f=t%20%3D%20%201050%20%5C%20s)
Generally the constant velocity that would let her finish at the same time is mathematically represented as
![v = \frac{d_1 + d_2}{t }](https://tex.z-dn.net/?f=v%20%3D%20%20%5Cfrac%7Bd_1%20%2B%20d_2%7D%7Bt%20%7D)
=> ![v = \frac{4000 + 1000}{1050 }](https://tex.z-dn.net/?f=v%20%3D%20%20%5Cfrac%7B4000%20%2B%201000%7D%7B1050%20%7D)
=> ![v = 4.76 \ m/s](https://tex.z-dn.net/?f=v%20%3D%204.76%20%5C%20m%2Fs)
Answer:
θ = 41.8º
Explanation:
This is an internal total reflection exercise, the equation that describes this process is
sin θ = n₂ / n₁
where n₂ is the index of the incident medium and n₁ the other medium must be met n₁> n₂
θ = sin⁻¹ n₂ / n₁
let's calculate
θ = sin⁻¹ (1.00 / 1.50)
θ = 41.8º
Answer:
g ≈ 7.4 m/s²
Explanation:
The acceleration due to gravity on planet XX is ...
g = GM/r² = (6.67·10^-11 × 4·10^22)/(6·10^5)^2
g ≈ 7.4 m/s²
B
Think of inertia of getting into a car accident without a seat belt although the car stops you will not you would likely fly out the window