Answer:
In an atomizer, or perfume sprayer, you squeeze a rubber bulb to squirt air through a tube. Because of the Bernoulli principle, the air rushing through the tube has a lower pressure than the surrounding atmosphere. ... The perfume is pushed out of the tube and sprays into the air as a fine mist.
Explanation:
Answer:
First, the image moves in and out of focus too quickly, so that it is difficult to precisely adjust the focus. Second, you run the risk of crashing the objective into the slide. Use the coarse focus only with the 4x low power objective. You can use the fine focus knob with all objectives.
Explanation:
How many times did the original sample lose 50% of its radioactivity ?
-- Start with. . . . . . . . . . . . 12 grams.
-- Lose half of it once. . . . . . 6 grams left.
-- Lose half of it again . . . . . 3 grams left.
-- Lose half of it again . . . . . 1.5 grams left.
-- Lose half of it again . . . . . 0.75 gram left.
-- How many times did it lose half ? 4 times.
-- How long does it take to lose half ? 4.5 days.
(That's why it's called the 'half-life'.)
-- How long did it take to lose half, 4 times ?
(4 x 4.5 days) = 18 days .
Answer:
<em>600N.</em>
Explanation:
From the question, we are to calculate the net force acting on the car.
According to Newton's second law of motion:
F = ma
m is the mass of the car
a is the acceleration = change in velocity/Time
a = v-u/t
F = m(v-u)/t
v is the final velocity = 30m/s
u is the initial velocity = 20m/s
t is the time = 5secs
m = 300kg
Get the net force:
Recall that: F = m(v-u)/t
F = 300(30-20)/5
F = 60(30-20)
F = 60(10)
<em>F = 600N</em>
<em>Hence the net force acting on the car is 600N.</em>
<em></em>
<em></em>