Answer:
Approximately 21 km.
Explanation:
Refer to the not-to-scale diagram attached. The circle is the cross-section of the sphere that goes through the center C. Draw a line that connects the top of the building (point B) and the camera on the robot (point D.) Consider: at how many points might the line intersects the outer rim of this circle? There are three possible cases:
- No intersection: There's nothing that blocks the camera's view of the top of the building.
- Two intersections: The planet blocks the camera's view of the top of the building.
- One intersection: The point at which the top of the building appears or disappears.
There's only one such line that goes through the top of the building and intersects the outer rim of the circle only once. That line is a tangent to this circle. In other words, it is perpendicular to the radius of the circle at the point A where it touches the circle.
The camera needs to be on this tangent line when the building starts to disappear. To find the length of the arc that the robot has travelled, start by finding the angle
which corresponds to this minor arc.
This angle comes can be split into two parts:
.
Also,
.
The radius of this circle is:
.
The lengths of segment DC, AC, BC can all be found:
In the two right triangles
and
, the value of
and
can be found using the inverse cosine function:


.
The length of the minor arc will be:
.
The statement "<span>When an electron is added to a neutral atom of an element to form a negative ion, the resulting change in energy is referred to as the electron potential of that element." is false.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
Density = (mass) / (volume), no matter how large or small the sample is.
We can't calculate the density, because you left out the number for the volume.
Also, you didn't tell us the unit for the mass of 180.
a). If the mass is 180 grams, then the density is
(180 gm) / (volume) .
b). No matter how many pieces you crush it into, and
no matter how large or small a piece is, its density is
the same. (I just wish we knew what the density really is.)
c). A piece may have 80 grams of mass. It doesn't "weigh" 80 grams.
Since the density of the whole rock is (180 gm) / (volume),
the density of any piece of it is (180 gm) / (volume).
Multiply each side by (volume): (Density) x (volume) = 180 gm
Divide each side by (density): Volume = (180 gm) / (density)
We can't calculate the volume of an 80-gm piece, because
we don't know the density. (That's because you left the volume
out of the question.)
Use the formula t = d/v
t = 15 km/ 37 km/h
t = 0.4054
t = 0.41 h (rounded)