Responder:
<h2>
490 julios
</h2>
Explicación:
Se dice que el trabajo se realiza cuando una fuerza aplicada a un objeto hace que el objeto se mueva a través de una distancia. El trabajo realizado por un cuerpo se expresa mediante la fórmula;
Workdone = Fuerza * Distancia
Como Fuerza = masa * aceleración,
Workdone = masa * aceleración * distancia
Masa dada = 5.0kg, aceleración = 2.0m / s² d =?
Para obtener d, usaremos una de las leyes del movimiento,
d = ut + 1 / 2at²
u = 0 (ya que el cuerpo acelera desde el reposo) yt = 7.0s
d = 0 + 1/2 (2) (7) ²
d = 49m
Workdone = 5 * 2 * 49
Workdone = 490 Julios
Answer:
Maybe put them in order ????
Explanation:
Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2
Refer to the diagram shown below.
The force, F, is applied at 5 cm from the elbow.
For dynamic equilibrium, the sum of moments about the elbow is zero.
Take moments about the elbow.
(5 cm)*(F N) - (30 cm)*(250 N) = 0
F = (30*250)/5 = 1500 N
Answer: 1500 N
Answer:
the force exerted on the foot by the tibia would be 2975 N
Explanation:
Given the data in the question;
To maintain equilibrium between the foot and the ball vertically, the addition normal normal force
(750 N) and the tension in the Achilles tendon
(2225 N) must be equal to the force exerted on the foot by the tibia;
so
|
| + |
| = |
|
so force exerted on the foot by the tibia will be;
|
| = |
| + |
|
so we substitute IN OUR VALUES
|
| = 750 N + 2225 N
|
| = 2975 N
Therefore, the force exerted on the foot by the tibia would be 2975 N