Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11
In a way it’s true because you can get a ticket for getting caught littering
Answer:
The girl will move with constant velocity
Explanation:
If after a certain time t_0 the velocity of the girl is v_0 =gt_0 and the upward force on the girl due to rope is mg ,where g is gravitational acceleration. Then the girl will move down with the constant velocity v_0 .
The girl will move with constant velocity,as explained above.
Answer: 114
Explanation:
The mass number of an element gives the sum of the protons and the neutrons inside the nucleus of one atom of that element, while the atomic number of an element gives the number of protons inside one atom of that element.
We can infer the number of neutrons inside one atom of Osmium from its mass number and atomic number.
The atomic number of osmium is 76, so each atom of osmium has 76 protons
The (average) mass number of osmium is 190, so each atom of osmium has (on average) 190 protons+neutrons
So, in order to find the average number of neutrons, we can subtract the atomic number from the mass number:
