Answer:
Explanation:
Upon arrival we needed to hunt in this new land we only had five refills and they needed 50 g of gunpowder to be shot once. We only have 15 pounds of gunpowder. It is taking six shots to kill one of these wild turkeys. How many turkeys can be shot with 15 pounds of gunpowder?
If we had plenty of refills, and it takes 6 shots to kill a wild turkey at 50 gms of gunpowder per shot, then each turkey requires 6X50 =300gms of gunpowder. We have 15X454 gms of gunpowder and have the potential to kill 15X454/300=22.7 or 22 turkeys.and it takes 6 shots to kill a wild turkey.
The limiting reagent is the number of refills, and withonly 5, we are out of luck and can't kill one turkey
To know this you pretty much do have to kind of memorize a few electronegativities. I don't recall ever getting a table of electronegativities on an exam.
From the structure, you have:
I remember the following electronegativities most because they are fairly patterned:
EN
H
=
2.1
EN
C
=
2.5
EN
N
=
3.0
EN
O
=
3.5
EN
F
=
4.0
EN
Cl
=
3.5
Notice how carbon through fluorine go in increments of
~
0.5
. I believe Pauling made it that way when he determined electronegativities in the '30s.
Δ
EN
C
−
Cl
=
1.0
Δ
EN
C
−
H
=
0.4
Δ
EN
C
−
C
=
0.0
Δ
EN
C
−
O
=
1.0
Δ
EN
O
−
H
=
1.4
So naturally, with the greatest electronegativity difference of
4.0
−
2.5
=
1.5
, the
C
−
F
bond is most polar, i.e. that bond's electron distribution is the most drawn towards the more electronegative compound as compared to the rest.
When the electron distribution is polarized and drawn towards a more electronegative atom, the less electronegative atom has to move inwards because its nucleus was previously favorably attracted to the electrons from the other atom.
That means generally, the greater the electronegativity difference between two atoms is, the shorter you can expect the bond to be, insofar as the electronegative atom is the same size as another comparable electronegative atom.
However, examining actual data, we would see that on average, in conditions without other bond polarizations occuring:
r
C
−
Cl
≈
177 pm
r
C
−
C
≈
154 pm
r
C
−
O
≈
143 pm
r
C
−
F
≈
135 pm
r
C
−
H
≈
109 pm
r
O
−
H
≈
96 pm
So it is not necessarily the least electronegativity difference that gives the longest bond.
Therefore, you cannot simply consider electronegativity. Examining the radii of the atoms, you should notice that chlorine is the biggest atom in the compound.
r
Cl
≈
79 pm
r
C
≈
70 pm
r
H
≈
53 pm
r
O
≈
60 pm
So assuming the answer is truly
C
−
C
, what would have to hold true is that:
The
C
−
F
bond polarization makes the carbon more electropositive (which is true).
The now more electropositive carbon wishes to attract bonding pairs from chlorine closer, thereby shortening the
C
−
Cl
bond, and potentially the
C
−
H
bond (which is probably true).
The shortening of the
C
−
Cl
bond is somehow enough to be shorter than the
C
−
C
bond (this is debatable).
Sand dunes would be created due to the mixture falling on each other
x
I couldn't really find anything about the growth time but it does say that it could remain viable in soil for up to 40 years
Answer:
The answer to your question is Molarity = 0.0708
Explanation:
Data
NaOH 0.05 M Volume 1 = 3.87 ml Volume 2 = 25.11 ml
HCl 15 ml
Process
1.- Find the volume used of NaOH
25.11 - 3.87 = 21.24 ml = 0.02124 l
2.- Write the balanced equation of the reaction
NaOH + HCl ⇒ NaCl + H₂O
3.- Calculate the moles of NaOH in the solution
Molarity = 
moles = Molarity x volume
moles = 0.05 x 0.02124
moles = 0.001062
4.- From the reaction we know that NaOH and HCl react in a proportion 1:1.
1 mol of NaOH ------------- 1 mol of HCl
0.001062 moles of NaOH ------------ x
x = (0.001062 x 1) / 1
x = 0.001062 moles of HCl
5.- Find the molarity of HCl
Molarity = 
Molarity = 0.0708