Answer:
Yes
Explanation:
A supercritical fluid has good properties for both liquid and as for extraction properties, the advantages then include:
- The fact that it has a lower viscosity than liquid CO2 allowing it to move through and around coffee beans more thoroughly with creating back pressure
- Its density is comparable to that of liquid CO2 meaning there is much CO2 per litre as there is liquid form making it more efficient
- It has a higher diffusivity than liquid CO2 which aids with penetration of the coffee beans on a molecular level
This experiment would not work with tea leaves because they also contain caffeine
Answer:
0.8 mL of protein solution, 9.2 mL of water
Explanation:
The dilution equation can be used to relate the concentration C₁ and volume V₁ of the stock/undiluted solution to the concentration C₂ and volume V₂ of the diluted solution:
C₁V₁ = C₂V₂
We would like to calculate the value for V₁, the volume of the inital solution that we need to dilute to make the required solution.
V₁ = (C₂V₂) / C₁ = (2mg/mL x 10mL) / (25 mg/mL) = 0.8 mL
Thus, a volume of 0.8 mL of protein solution should be diluted with enough water to bring the total volume to 10 mL. The amount of water needed is:
(10 mL - 0.8 mL) = 9.2 mL
Answer:
To prepare a 1 M solution, slowly add 1 formula weight of compound to a clean 1-L volumetric flask half filled with distilled or deionized water. Allow the compound to dissolve completely, swirling the flask gently if necessary.
Explanation:
have a great day ahead ♥️