Answer:
1,211.1 kg.
Explanation:
the force of gravity is less on the moon than on earth, so if the man can lift 200kg on earth, he could lift a greater amount on the moon because there is less resistance from gravity.
To know the amount of mass he can lift on the moon, we first need to know the amount of weight that is equivalent to those 200kg here on earth. This because the weight of the object is equal to the force that must be applied to lift it, and that force is applied by the man and it will be the same here and on the moon.
We calculate weight using the formula:
where
is the weight of the object (the force with which the earth attracts the object)
is the mass and g the acceleration of gravity.
so

for earth the acceleration due to gravity is: 
thus:

now we use this value to calculate the mass he can lift on the moon, since for the moon
.
we use the same equation, w =mg substituting w = 1962N and
:

he can lift 1,211.1 kg.
You can also find the result using the approximate value of the acceleration of gravity on the moon as g/6, where g is the acceleration on earth.
Answer:
526.57 Pa
Explanation:
P ( pressure at the bottom of the container) = 1.049 × 10^5 pa
Using the formula of pressure in an open liquid
Pw ( pressure due to water) = ρhg where ρ is density of water in kg/m³, h is the height in meters, and g is acceleration due to gravity in m/s²
Pw = 1000 × 9.81 ×0.209 = 2050.29 Pa
P( atmospheric pressure) = 1.013 × 10^5 Pa
Pl ( pressure due to the liquid) = ρ(density of the liquid) × h (depth of the liquid) × g
Subtract each of the pressure from the absolute pressure at the bottom
P(bottom) - atmospheric pressure
(1.049 × 10^5) - (1.013 × 10^5) = 0.036 × 10^5 = 3600 Pa
subtract pressure due to water from the remainder
3600 - 2050.29 = 1549.71 Pa
1549.71 = ρ(density of the liquid) × h (depth of the liquid) × g
ρ (density of the liquid) = 1549.71 / (h × g) = 1549.71 / (0.3 × 9.81) =526.57 Pa
Answer:
idk just needs points
Explanation:
i need 20 words so sorry ig
the answer is an anteater
Answer:
Explanation:
Work is a force time the distance moved in the direction of that force, time is not a variable. Provided that the 50 N forces were applied in the same direction, the work done is identical. Assuming both applied force and direction of motion are horizontal W = Fd = 50(10) = 500J.
If the reason that one was slower is because the second person applied his force at an angle, let's say 60° below the horizontal, then the work done by the second person is 50cos60(10) = 250 J
Time IS a consideration for Power, the RATE of doing work. Provided the force and motion are horizontal, the first person applied twice as much Power as the second person doing an identical amount of work in half the time.