Answer:
Explanation:
Newton's first law of motion:
An object in motion stays in motion, and an object at rest stays at rest, until acted upon by an unbalanced force.
Newton's second law:
The net force on an object is equal to its mass times its acceleration.
Newton's third law:
For every action, there is an opposite and equal reaction.
Answer:
5 Km/h
Explanation:
From the question given above, the following data were obtained:
Distance travelled = 10 Km
Time = 2 hours
Speed =?
Speed is simply defined as the distance travelled per unit time. Mathematically, it can be represented as:
Speed = distance travelled /time.
With the above formula, we can obtain the speed at which the duck is travelling as follow:
Distance travelled = 10 Km
Time = 2 hours
Speed =?
Speed = distance travelled /time.
Speed = 10 / 2
Speed = 5 Km/h
Thus, the duck is travelling at a speed of 5 Km/h
Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2
Answer:
3.5m/s^2
Explanation:
From Newton's second Law of Motion
F = ma
Where F is the applied force, m is the mass of the object and a is the acceleration.
F = 350 N
Mass = 100kg
350N = 100×a
a = 350/100
a = 3.5m/s^2
The acceleration of the object will be 3.5m/s^2