The rate constant is mathematically given as
K2=2.67sec^{-1}
<h3>What is the Arrhenius equation?</h3>
The rate constant for a particular reaction may be calculated with the use of the Arrhenius equation. This constant can be stated in terms of two distinct temperatures, T1 and T2, as follows:
Therefore
KT1= 0.0110^{-1}
T1= 21+273.15
T1= 294.15K
T2= 200
T2=200+273.15
T2= 473.15K
Ea= 35.5 Kj/Mol
Hence, in j/mol R Ea is
Ea=35.5*1000 j/mol R
K2/0.0110 =e^(5.492)
K2/0.0110 =242.74
K2= 242.74*0.0110
K2=2.67sec^{-1}
In conclusion, rate constant
K2=2.67sec^{-1}
Read more about rate constant
brainly.com/question/20305871
#SPJ1
Answer:
Na k
Explanation:
because na is a metal and potassium is also a metal and both are active metal so is less likely to react as no bond is formed between them
Molarity is defined as the ratio of number of moles to the volume of solution in litres.
The mathematical expression is given as:
Here, molarity is equal to 1.43 M and volume is equal to 785 mL.
Convert mL into L
As, 1 mL = 0.001 L
Thus, volume = = 0.785 L
Rearrange the formula of molarity in terms of number of moles:
n =
= 1.12255 mole
Now, Number of moles =
Molar mass of potassium hydroxide = 56.10 g/mol
1.12255 mole =
mass in g =
= 62.97 g
Hence, mass of = 62.97 g
Answer: d) -705.55 kJ
Explanation:
Heat of reaction is the change of enthalpy during a chemical reaction with all substances in their standard states.
Reversing the reaction, changes the sign of
On multiplying the reaction by , enthalpy gets half:
Thus the enthalpy change for the given reaction is -705.55kJ