<u>Answer:</u> The nuclear equations for the given process is written below.
<u>Explanation:</u>
The chemical equation for the bombardment of neutron to U-238 isotope follows:

Beta decay is defined as the process in which neutrons get converted into an electron and a proton. The released electron is known as the beta particle.

The chemical equation for the first beta decay process of
follows:

The chemical equation for the second beta decay process of
follows:

Hence, the nuclear equations for the given process is written above.
Dalton Found out there was a small, hard indestructible sphere that is the smalles part of an element.He created his own Atomic Theory:
-All Matter is made up of small particles called atoms.
-Atoms cannot be created, destroyed, or divided into smaller particles.
-All atoms of the same element are identical in mass and size. The atoms of one element are different in mass and size from the atoms of other elements.
<span>-Compounds are created when atoms of different elements link together in definite proportions.
</span><span>Rutherford had found the positively charged nucleus in the middle of every atom using his Gold Foil Experiment. While doing this experiment, he expected these particles to just pass right through the foil but they bounced right back. He also proposed there were negatively charged electrons revolving around the nucleus.
</span><span>Thompson found negative electrons and inferred atoms also contain negative particles. He inferred there was a lump of positively charged material, with negative electrons throughout. He used the Raisins Bun Model to explain.
</span>Chadwick <span>proved that it consisted of a neutral particle with about the same mass as a proton "Neutron" is the name given to the particle</span>
Bohr believed Rutherford's prediction was correct, but it wasn't complete. Bohr proposed electrons could only move between energy levels, rather then being able to move everywhere.
Answer: limiting reactant controls the amount of product formed in a chemical reaction.
* Hopefully this answers your question :) Mark me the brainliest:)
~ 234483279c20~
The atoms that would be expected to be diamagnetic in the ground state is magnesium
The magnetism of an atom refers to its electronic configuration. A diamagnetic atom is an atom whose electrons are all paired.
A paired electron is an electron that occurs in pairs in its orbital shell.
At their respective ground state, the electronic configuration of the given elements are as follows:
The electronic configuration of magnesium is 1s²2s²2p⁶3s². As such its a diamagnetic atom.
The electronic configuration of Potassium is 1s²2s²2p⁶3s²3p⁶4s¹. Hence, Potassium has one unpaired electron in its outermost shell.
The electronic configuration of Chlorine is 1s²2s²2p⁶3s²3p⁵. Hence, Chlorine has one unpaired electron in its outermost shell.
The electronic configuration of Cobalt is 1s²2s²2p⁶3s²3p⁶3d⁷4s². Hence, the unpaired electrons of Cobalt in its outermost shell are three.
Therefore, the atoms that are diamagnetic in the ground state is magnesium.
Learn more about diamagnetic atoms here:
brainly.com/question/18865305?referrer=searchResults
Answer:
320 g
Step-by-step explanation:
The half-life of Co-63 (5.3 yr) is the time it takes for half of it to decay.
After one half-life, half (50 %) of the original amount will remain.
After a second half-life, half of that amount (25 %) will remain, and so on.
We can construct a table as follows:
No. of Fraction Mass
half-lives t/yr Remaining Remaining/g
0 0 1
1 5.3 ½
2 10.6 ¼
3 15.9 ⅛ 40.0
4 21.2 ¹/₁₆
We see that 40.0 g remain after three half-lives.
This is one-eighth of the original mass.
The mass of the original sample was 8 × 40 g = 320 g