Answer:
x = 11.23 m
Explanation:
For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.
Let's reduce to SI system units
θ = 155 rev (2pi rad / rev) = 310π rad
α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²
Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)
w² = w₀² + 2 α θ
w =√ 2 α θ
w = √(2 4pi 310pi)
w = 156.45 rad / s
The relationship between angular and linear velocity
v = w r
v = 156.45 0.175
v = 27.38 m / s
In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive
y =
t - ½ g t²
As it leaves the highest point its speed is horizontal
y = 0 - ½ g t²
t = √ (-2y / g)
t = √ (-2 (-0.820) /9.8)
t = 0.41 s
With this time we calculate the horizontal distance, because the constant horizontal speed
x = vox t
x = 27.38 0.41
x = 11.23 m
Answer:
h = 5.09 m
Explanation:
Applying the Law of conservation of energy to this situation, we can write:

where,
h = height of the hill = ?
v = speed of cart at the end = 10 m/s
g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>h = 5.09 m</u>
Answer:
its basically on where u live is more hot or cold. Is rain and snow common or uncommon. where is this. is it easier to live or harder to live wherever u live at. list 12 different organisms in the place u live. and one fun fact its basically about what u see where u in the city u live
Answer:
KE=800,000
Explanation:
The formula for kinetic energy is KE=1/2mv^2 or Kinetic Energy= 0.5*mass*velocity^2
so 1000 is the mass and 40 is the velocity
KE=0.5*1000*40^2
KE=0.5*1,000*1,600
KE=800,000 Joules