Answer:
The pH of a solution is simply a measure of the concentration of hydrogen ions,
H
+
, which you'll often see referred to as hydronium cations,
H
3
O
+
.
More specifically, the pH of the solution is calculated using the negative log base
10
of the concentration of the hydronium cations.
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
pH
=
−
log
(
[
H
3
O
+
]
)
a
a
∣
∣
−−−−−−−−−−−−−−−−−−−−−−−−
Now, we use the negative log base
10
because the concentration of hydronium cations is usually significantly smaller than
1
.
As you know, every increase in the value of a log function corresponds to one order of magnitude.
Explanation:
1 mol of any particles has 6.02 * 10 ²³ particles.
If we look at 1 NH3 (1 mol NH3 or 1 molecule NH3), we can see that 1 molecule NH3 has 1 atom of N and 3 atoms of H; also 1 mole of NH3 has 1 mole of N atoms and 3 moles of H atoms.
So, 1 mol of NH3 has 1 mol of N atoms,
and 2.79 mol NH3 have 2.79 mol of N atoms.
2.79 mol of N atoms* 6.02 * 10 ²³ N atoms/ 1 mol N atoms = 1.68*10²⁴ N-atoms
Answer is 1.68*10²⁴ N-atoms.