Answer: calculate the free fall distance and velocity without air resistance from, the free fall.
Explanation:
To find out something's speed (or velocity) after a certain amount of time, you just multiply the acceleration of gravity by the amount of time since it was let go of. So you get: velocity = -9.81 m/s^2 * time, or V = gt. The negative sign just means that the object is moving downwards
Answer:
The average acceleration is 
Explanation:
<u>Uniform Acceleration
</u>
When an object varies its velocity at the same rate, the acceleration is constant.
The relation between the initial and final speeds is:

Where:
vf = Final speed
vo = Initial speed
a = Constant acceleration
t = Elapsed time
The acceleration can be calculated by solving for a:

The Indy 500 race car increases its speed from vo=4 m/s to vf=36 m/s in t=4 s. Thus, the average acceleration is:

The average acceleration is 
Answer:
The height of the image of the candle is 20 cm.
Explanation:
Given that,
Size of the candle, h = 12 cm
Object distance from the candle, u = -6 cm
Focal length of converging lens, f = 15 cm
To find,
The height of the image of the candle.
Solution,
Firstly, we will find the image distance of the candle. Let it is equal to v. Using lens formula to find the image distance.

v is image distance

If h' is the height of the image. Magnification is given by :


So, the height of the image of the candle is 20 cm.
The frictional force between two bodies depends mainly on three factors: (I) the adhesion between body surfaces
(ii) roughness of the surface
(iii) deformation of bodies.
<3
Answer:
dynamic and sometimes ballistic